



Bioorganic & Medicinal Chemistry 16 (2008) 4759–4800

Bioorganic & Medicinal Chemistry

#### Review

# Recent advances in selective $\alpha_1$ -adrenoreceptor antagonists as antihypertensive agents

Kishor S. Jain,<sup>a,\*</sup> Jitender B. Bariwal,<sup>b</sup> Muthu K. Kathiravan,<sup>c</sup> Manisha S. Phoujdar,<sup>a</sup> Rajkumari S. Sahne,<sup>a</sup> Bishram S. Chauhan,<sup>d</sup> Anamik K. Shah<sup>b</sup> and Mange Ram Yadav<sup>d</sup>

<sup>a</sup>Sinhgad College of Pharmacy, Pune 411041, India <sup>b</sup>Department of Chemistry, Saurashtra University, Rajkot 360005, India <sup>c</sup>Poona College of Pharmacy, Pune 411038, India <sup>d</sup>Maharaja Sayajirao University, Baroda 390002, India

Received 15 January 2008; revised 27 February 2008; accepted 27 February 2008 Available online 4 March 2008

Abstract—Hypertension is one of the most serious health problems of the modern world with a continuous rise in the number of patients. Selective  $\alpha_1$ -adrenoreceptor antagonists though have many advantages and uses in the management of arterial hypertension, their lack of specificity at the level of  $\alpha_1$ -adr subtypes leads to multiple side effects. Existence of multiple  $\alpha_1$ -adr subtypes holds great promise for the discovery and development of more specific and selective drug molecules, targeting only one  $\alpha_1$ -adr subtype at a time and thus relative freedom from side effects. Herein, the research done on the discovery and evaluation of a variety of chemically diverse structures as selective antagonists of  $\alpha_1$ -adr and  $\alpha_1$ -adr subtypes in recent years has been reviewed. © 2008 Elsevier Ltd. All rights reserved.

#### **Contents**

| 1. | Intro | duction               |                                                                           | 4760  |
|----|-------|-----------------------|---------------------------------------------------------------------------|-------|
|    | 1.1.  | Hypert                | ension and its types                                                      | 4760  |
|    | 1.2.  | Contro                |                                                                           | 4760  |
|    | 1.3.  | Causes                | and pathological risks of uncontrolled hypertension                       | 4761  |
|    | 1.4.  |                       |                                                                           | 4761  |
|    |       | 1.4.1.                |                                                                           | 4761  |
| 2. | The c |                       |                                                                           | 4761  |
| 3. | The c | α <sub>1</sub> -adren | ergic receptor subtypes                                                   | 4763  |
|    | 3.1.  | Introdu               |                                                                           | 4763  |
|    | 3.2.  | Signific              | cance of receptor subtypes                                                | 4765  |
|    | 3.3.  | $\alpha_1$ -Adr       |                                                                           | 4766  |
|    |       | 3.3.1.                | Introduction                                                              | 4766  |
|    |       | 3.3.2.                |                                                                           | 4766  |
|    |       | 3.3.3.                |                                                                           | 4766  |
|    | 3.4.  | Demer                 |                                                                           | 4767  |
| 4. | Recei | nt advaı              |                                                                           | 4767  |
|    | 4.1.  | 2,4-Dia               |                                                                           | 4767  |
|    |       | 4.1.1.                | Introduction                                                              | 4767  |
|    |       | 4.1.2.                | Modifications made in/on the pyrimidine ring of 4-amino-6,7-dimethoxyquin | -azo- |
|    |       |                       |                                                                           | 4769  |
|    |       | 4.1.3.                | Modifications involving the 2-piperazinyl ring                            | 4770  |

Keywords: Hypertension; Antihypertensive agents;  $\alpha_1$ -Adrenergic receptor;  $\alpha_1$ -adr subtypes; Selective  $\alpha_1$ -adrenergic receptor antagonists.

\*Corresponding author. Tel./fax: +91 20 24354720; e-mail addreses: kishor.s.jain@gmail.com; ks\_jain@ysnl.net

|       | 4.1.4.                 | Modifications involving the replacement of the furoyl moiety               | 4773 |  |  |  |  |
|-------|------------------------|----------------------------------------------------------------------------|------|--|--|--|--|
| 4.2.  | 1,4-Bei                | nzodioxans and related compounds                                           | 4775 |  |  |  |  |
|       | 4.2.1.                 | Modifications done on the 1,4-benzodioxan and phenoxy ring systems         | 4775 |  |  |  |  |
|       | 4.2.2.                 | Opening of the 1,4-dioxan ring system                                      | 4777 |  |  |  |  |
|       | 4.2.3.                 | Modifications in the side chain                                            | 4777 |  |  |  |  |
|       | 4.2.4.                 | Modifications in the 2,6-dimethoxyphenoxyalkyl ring system                 | 4778 |  |  |  |  |
|       | 4.2.5.                 | Replacement of 1,4-benzodioxan ring system with other fused ring systems   | 4778 |  |  |  |  |
| 4.3.  | Dihydi                 | ropyridines and dihydropyrimidines                                         | 4778 |  |  |  |  |
|       | 4.3.1.                 | Derivatives from dihydropyridine nucleus                                   | 4778 |  |  |  |  |
|       | 4.3.2.                 | Derivatives from dihydropyrimidine nucleus                                 | 4779 |  |  |  |  |
|       | 4.3.3.                 | Derivatives from dihydropyrimidinones                                      | 4779 |  |  |  |  |
| 4.4.  | Fused                  | pyrimidindiones                                                            | 4781 |  |  |  |  |
| 4.5.  | Pvrida                 | zinone derivatives                                                         | 4784 |  |  |  |  |
| 4.6.  | Imidaz                 | rolines and fused imidazolines                                             | 4786 |  |  |  |  |
|       | 4.6.1.                 | Imidazoline derivatives                                                    | 4786 |  |  |  |  |
|       | 4.6.2.                 | Fused imidazolines                                                         | 4787 |  |  |  |  |
| 4.7.  | N-Arv                  | lindoles                                                                   | 4788 |  |  |  |  |
| 4.8.  |                        | and <i>N</i> -heteroaryl piperazine derivatives                            | 4788 |  |  |  |  |
| 4.9.  | Miscel                 | laneous compounds                                                          | 4792 |  |  |  |  |
| Phar  |                        | gical evaluation of selective $\alpha_1$ -adr subtypes antagonist activity | 4794 |  |  |  |  |
|       | Summary and conclusion |                                                                            |      |  |  |  |  |
|       | Acknowledgments        |                                                                            |      |  |  |  |  |
|       | References and notes   |                                                                            |      |  |  |  |  |
| 1.010 | References and notes   |                                                                            |      |  |  |  |  |

#### 1. Introduction

In today's era of globalization, characterized by hurry, worry, and curry, the incidences of cardiovascular diseases are on the rise. Hypertension is a condition where the blood pressure is constantly higher than normal. This poses a serious health risk because it forces the heart to work extra hard. Constantly higher blood pressure can damage the coronary arteries, the brain, the kidneys, and the eyes. Hypertension is a major cause of strokes and heart attacks<sup>1</sup> (Fig. 1).

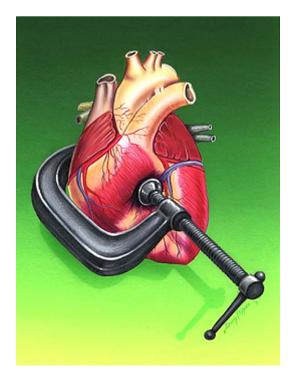



Figure 1. Heart under pressure.

#### 1.1. Hypertension and its types

Hypertension is defined conventionally as blood pressure ≥ 140/90 mm. The Joint National Committee, The World Health Organization, as well as, International Hypertension Society's Subcommittee have published their own definitions of classification of blood pressure.<sup>2,3</sup>

### (1) Primary hypertension

Despite many years of active research, there is no single major factor that can be attributed to primary hypertension. There is a natural progression of the disease which suggests that an early elevation in blood volume and cardiac output might initiate subsequent changes in systemic vasculature (increased resistance).

Though the specific cause for this type is unknown, almost 90% of the total hypertension cases are of this type. It is also called as 'essential or idiopathic' hypertension.

# (2) Secondary hypertension

There are many known conditions that can cause secondary hypertension also known as 'inessential hypertension'. Regardless of the cause, arterial pressure becomes elevated either due to increase in cardiac output or increase in systemic vascular resistance or both. When cardiac output is elevated, it is generally due to either increased neurohumoral activation of the heart or increased blood volume.

The cause may be any of these: renal artery disease, eclampsia of pregnancy or pheochromocytoma. Only around 10% of the total cases belong to this category (Table 1).

#### 1.2. Control of blood pressure

Blood pressure in its simplest term is the force of pumping of heart action, working against the resistance provided by the blood vessels. Body has a special 'blood pressure system'. The purpose of this system is to main-

**Table 1.** Definition (classification) of blood pressure by the Word Health Organization/International Society of Hypertension<sup>4</sup>

| Category                           | Systolic blood<br>pressure (SBP)<br>(mm Hg) | Diastolic blood<br>pressure (DBP)<br>(mm Hg) |
|------------------------------------|---------------------------------------------|----------------------------------------------|
| Normotension                       | <140                                        | <90                                          |
| Mild hypertension                  | 140-180                                     | 90–95                                        |
| Subgroup: borderline               | 140-160                                     | 90–95                                        |
| Moderate and severe hypertension   | ≥180                                        | ≥105                                         |
| Isolated and systolic hypertension | ≥140                                        | <90                                          |
| Subgroup: borderline               | 140–160                                     | <90                                          |

<sup>&#</sup>x27;<' = less than; '>' = more than; ' $\geqslant$ ' = more than or equal; ' $\leqslant$ ' = less than or equal.

tain blood flow to all the tissues of the body at rest or during movements<sup>4,5</sup> (Fig. 2).

The Figure 3 and Table 2 depict the delicate coordination between cardiovascular system and the sympathetic nervous system involving some important organs like kidneys, brain, adrenals, and heart, to regulate the blood pressure. Genetic and environmental factors cause imbalance in this and cause hypertension.

# 1.3. Causes and pathological risks of uncontrolled hypertension

High blood pressure is a potential risk factor for cardiovascular diseases, independent of the presence or absence of other risk factors, for example, smoking, diabetes, and/or hypercholesterolemia. The other factors such as genetics, age, sex, race, diet, and environmental factors. (e.g., stress and physical activity), also play important role in elevation of the blood pressure. Herein, Table 3 denotes the pathological risks of uncontrolled, untreated hypertension to various organs and circulatory system.<sup>8,9</sup>

## 1.4. Antihypertensive drugs

**1.4.1. History and classification.** The discovery of most of our current antihypertensive drugs did not involve the target design of molecules to modify a blood pressure control system. Most of the drugs have evolved out through conventional synthesis and biological evaluation processes based on QSAR studies. <sup>10</sup> The currently used antihypertensive drugs are classified into seven broad categories (Table 4).

#### 2. The $\alpha$ -adrenergic receptors and subtypes

The  $\alpha$ -adr receptors play a pivotal role in the regulation of a variety of physiological processes, particularly within the cardiovascular system (Table 5) The past two decades have seen a renaissance of interest in  $\alpha$ -adrs, their physiological relevance, classification, and second messenger system. Indepth knowledge arising from their research is leading towards development of agonists and antagonists, highly selective for the various subtypes of  $\alpha$ -adr and with possible therapeutic values and lesser side effects. <sup>11</sup>

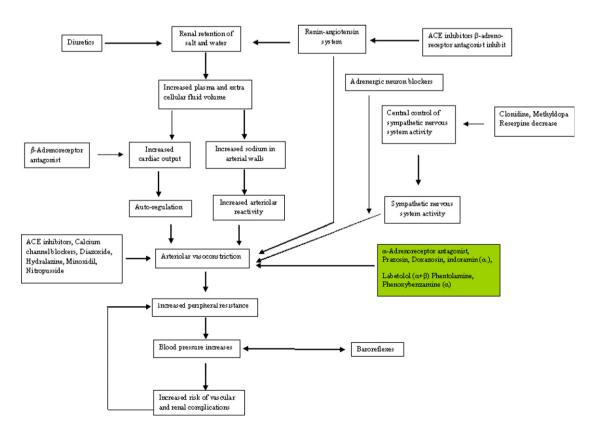
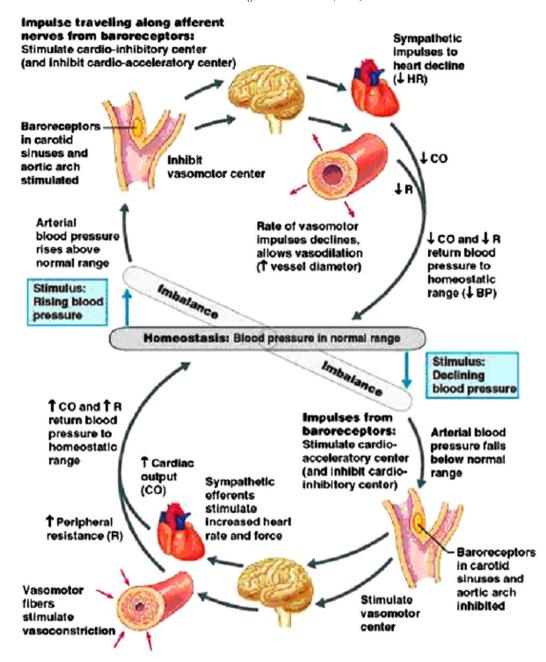




Figure 2. Body's blood pressure modulating system.



Source: Online anatomy and physiology@pgcc.edu

Figure 3. The interplay between cardiovascular organ system to regulate 'normal' blood pressure and the genetic and environmental factors that lead to hypertension.<sup>6</sup>

The main subtypes of  $\alpha$ -adrs are  $\alpha_1$  and  $\alpha_2$ .

The  $\alpha_1$ - and  $\alpha_2$ -adrs are located in the vascular smooth muscle cell membrane, and upon stimulation by appropriate agonists they mediate vasoconstriction. The occurrence of  $\alpha_1/\alpha_2$ -adrs throughout the vascular bed is not uniform. Table 6 summarizes which  $\alpha$ -adr subtype mediates vasoconstrictions in different vascular beds in different mammalian species.

The simultaneous occurrence of both receptor subtypes on vascular smooth muscles makes it conceivable that  $\alpha_1$ - and  $\alpha_2$ -adrs can contribute to the maintenance of peripheral arterial tone and may play an important role in the increased peripheral resistance seen in hypertension. Drugs acting as selective antagonists at various post-junctional  $\alpha_1$ -adrs are now frequently used in the therapy of high blood pressure, prazosin being the most common drug. However, the possibility of orthostatic hypotension after the onset of prazosin (first dose effect) has to be recognized. Beffectiveness of prazosin in the chronic therapy of hypertension is partially due to its lack of affinity for  $\alpha_2$ -adr, or very high  $\alpha_1$ -/ $\alpha_2$ -adr selectivity index.

**Table 2.** Cellular sites of blood pressure control<sup>7</sup>

| Organ/tissue                             | Cell type                                         | Cellular response                            | BP Effect                               |
|------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------|
| Blood vessels (including renal coronary, | Smooth muscle cells                               | Contract and release endothelin              | ↓Resistance<br>Hypertrophy              |
| mesentric and cerebral)                  | Endothelial cells                                 | Release NO↑                                  | Resistance                              |
| ,                                        | Interstitial cells (fibroblasts)                  | Collagen synthesis                           | ↑Resistance                             |
|                                          | Circulating blood cells (platelets)               | Aggregate and release cytokines              | ↓↑Resistance                            |
|                                          |                                                   |                                              | ↓↑ Capillary permeability               |
| Kidneys                                  | Afferent/arterioles                               | Contract                                     | ↓↑GFR                                   |
| •                                        | Mesangial                                         | Contract                                     | ↓↑GFR                                   |
|                                          | -                                                 | Release gravin factors                       | Hypertrophy (↓↑GFR)                     |
|                                          | Glomerular cells                                  | Rennin release                               | ↑Ang II synthesis (↑resistance          |
|                                          | Tubular cells                                     | Na <sup>+</sup> , H <sub>2</sub> O transport | ↓↑Plasma volume                         |
| Adrenals                                 | Zona glomerulosa cells                            | Release aldosterone                          | ↑Na <sup>+</sup> reabsorption (↑volume) |
|                                          | Medullary chromophin cells                        | Catecholamine release                        | ↑Resistance, ↑CO                        |
| Heart                                    | Myocytes                                          | Contract                                     | †Flow                                   |
|                                          |                                                   | Hypertrophy                                  | ↓↑Resistance                            |
|                                          | Non-myocytes                                      | Collagen synthesis                           | ↑Resistance                             |
| Sympathetic nerves                       | Post-ganglionic cells                             | Norepinephrine release                       | ↑Resistance, ↑CO                        |
| Brain                                    | Neurohypophysis                                   | AVP release                                  | ↑Na reabsorption, (↑volume)             |
|                                          | Neurones (medulla, hypothalamus, cerebral cortex) | ↓↑Firing rate, transmitter release           | ↓↑Sympathetic outflow                   |

GFR, glomerular filtration rate; CO, cardiac output; ↑, increase; ↓, decrease.

Table 3. Pathological risks of uncontrolled hypertension

| Target organ  | Clinical manifestations                                                                                                                                       |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brain         | Strokes (cerebral vascular accidents), transient cerebral ischemia                                                                                            |
| Heart         | Acute myocardial infarction, sudden coronary death, accelerated ischemic heart disease (angina, arrhythmias), congestive heart failure                        |
| Kidney        | Renal failure                                                                                                                                                 |
| Blood vessels | Aortic aneurysm (fusiform, dissecting), atherothrombotic obstruction and atenosis, ocular fundus damage (spasms to papilloedema), peripheral vascular disease |

In contrast to the  $\alpha_1$ -adr, the post-junctional vascular  $\alpha_2$ -adr receptors have not been established yet as a target for antihypertensive therapy, though there is some evidence suggestive of some role of  $\alpha_2$ -adrs in the pathogenesis and maintenance of hypertension.<sup>39</sup>

#### 3. The $\alpha_1$ -adrenergic receptor subtypes

## 3.1. Introduction and discovery

Shortly after the division of adrenoreceptor into two major subtypes  $\alpha_1$ - and  $\alpha_2$ -adrenoceptors, evidence

Table 4. Classes of currently established drugs for the treatment of hypertension

| Class                       | Chemical                                                 | Examples of drugs                                                                                                                                                                                                                                                                     |  |
|-----------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Diuretics                   | Thiazide type Potassium sparing type Loop type           | Chlorothiazide, chlorthalidone, Bendroflumethiazide, Trichlormethiazide<br>Spironolactone, Amiloride, Triamterene<br>Furosemide, Ethacrynic acid, Bumetanide, Torasemide                                                                                                              |  |
| β-Blockers                  | Non-selective $(\beta_1/\beta_2)$<br>Selective $\beta_1$ | Propranolol, Timolol, Nadolol, Pindolol, Cartetolol<br>Atenolol, Betaxolol, Metaprolol, Acebutolol, Tozalol                                                                                                                                                                           |  |
| ACE inhibitors              |                                                          | Captopril, Enalapril, Lisinopril, Fosinopril, Ramipril                                                                                                                                                                                                                                |  |
| Ca <sup>2+</sup> blockers   | Dihydropyridine Phenyalkylamines Verapamil, Gallopumil   | Nifedipine, Nicardipine, Felodipine, Amlodipine                                                                                                                                                                                                                                       |  |
|                             | Benzothiazepines                                         | Diltiazem                                                                                                                                                                                                                                                                             |  |
| $\alpha_1$ -Adr antagonists |                                                          | Prazosin, Doxazosin, Terazosin, Labetolol                                                                                                                                                                                                                                             |  |
| $\alpha_1$ -Adr agonists    |                                                          | Clonidine, Guanafexine, Guanabenz                                                                                                                                                                                                                                                     |  |
| Miscellaneous               |                                                          | α-Methyldopa, Euronal blockers (Bretilium, Guanethidine)<br>Rauwolfia and its alkaloids, (Reserpine, Deserpine, Rauwolfia whole root)<br>Ganglionic blockers (Guanadrel, Mecamylamine, Hexamethonium)<br>Non-specific vasodilators (Hydralazine, Nitroprusside, Diazoxide, Minoxidil) |  |

**Table 5.** Distribution, location and function of  $\alpha_1$ - and  $\alpha_2$ -adr

| Type       | Organ/tissue                                                    | Activation effects                                                |
|------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| $\alpha_1$ | Blood vessels (postsynaptic)                                    | Contraction                                                       |
|            | Smooth muscle (postsynaptic)                                    | Contraction                                                       |
|            | Heart (postsynaptic)                                            | Positive inotropy/chronotropy                                     |
|            | Eyes (postsynaptic)                                             | Mydriasis, ocular hypertension                                    |
|            | Liver (postsynaptic)                                            | Glycogen phosphorylase activation                                 |
|            | CNS (postsynaptic)                                              | Stimulation, inhibition of baroreceptor afferent inputs           |
|            | Sympathetic neurons (presynaptic)                               | Inhibition of noradrenaline release                               |
| $\alpha_2$ | Sympathetic, cholinergic and serotonergic neurons (presynaptic) | Inhibition of noradrenaline, acetylcholine, and serotonin release |
|            | CNS (postsynaptic)                                              | Hypotension, bradycardia                                          |
|            | Sympathetic ganglia                                             | Hyperpolarization                                                 |
|            | Somadendrites in CNS                                            | Inhibition of firing                                              |
|            | Platelets                                                       | Aggregation                                                       |
|            | Fat cells                                                       | Inhibition of lipolysis                                           |
|            | Pancreatic islets                                               | Inhibition of insulin secretion                                   |
|            | Blood vessels (postsynaptic)                                    | Contraction                                                       |
|            | Intestinal epithelial cells                                     | Inhibition of intestinal secretion                                |

**Table 6.** Distribution of  $\alpha_1$ -adr in various vascular beds

| Vascular bed | Species                         | $\alpha_1$ -Adr in subtype | Ref |
|--------------|---------------------------------|----------------------------|-----|
| Whole animal | Anesthetized dog                | $\alpha_1 + \alpha_2$      | 12  |
| (blood       | Pithed dog                      | $\alpha_1 + \alpha_2$      | 13  |
| pressure)    | Conscious dog                   | $\alpha_1 + \alpha_2$      | 14  |
|              | Anesthetized cat                | $\alpha_1 + \alpha_2$      | 15  |
|              | Pithed cat                      | $\alpha_1 + \alpha_2$      | 16  |
|              | Pithed rat                      | $\alpha_1 + \alpha_2$      | 17  |
|              | Pithed rabbit                   | $\alpha_1 + \alpha_2$      | 18  |
|              | Conscious rabbit                | $\alpha_1 + \alpha_2$      | 19  |
| Venous       | Pithed rat                      | $\alpha_1 + \alpha_2$      | 16  |
| capacitance  | Pithed cat                      | $\alpha_1$                 | 16  |
| vessels      | Anesthetized dog                | $\alpha_1$                 | 20  |
|              | Conscious dog                   | $\alpha_1 + \alpha_2$      | 14  |
|              | Anesthetized dog                | $\alpha_1 + \alpha_2$      | 21  |
| Coronary     | Anesthetized dog                | $\alpha_1 + \alpha_2$      | 22  |
| circulation  | Isolated guinea pig heart       | $\alpha_1 + \alpha_2$      | 23  |
| Mesenteric   | Pithed rat                      | $\alpha_1 + \alpha_2$      | 24  |
| circulation  | Anesthetized dog                | $\alpha_1 + \alpha_2$      | 25  |
|              | Anesthetized cat                | $\alpha_1 + \alpha_2$      | 26  |
| Renal        | Anesthetized cat                | $\alpha_1$                 | 27  |
| vasculature  | Pithed rat                      | $\alpha_1$                 | 28  |
|              | Anesthetized cat                | $\alpha_1$                 | 26  |
|              | Anesthetized dog                | $\alpha_1$                 | 29  |
|              | Anesthetized rabbit             | $\alpha_1 + \alpha_2$      | 30  |
|              | Human (hypertensive)            | $\alpha_1 + \alpha_2$      | 31  |
| Pulmonary    | Anesthetized dog                | $\alpha_1 + \alpha_2$      | 32  |
| circulation  | Anesthetized cat                | $\alpha_1 + \alpha_2$      | 33  |
| Muscular     | Anesthetized dog (femoral)      | $\alpha_1 + \alpha_2$      | 29  |
|              | Anesthetized cat (femoral)      | $\alpha_1 + \alpha_2$      | 34  |
|              | Anesthetized rabbit             | $\alpha_1 + \alpha_2$      | 35  |
|              | Anesthetized rat (hindquarters) | $\alpha_1 + \alpha_2$      | 36  |
|              | Human (forearm)                 | $\alpha_1 + \alpha_2$      | 37  |

began to emerge that was inconsistent with a single vascular  $\alpha\text{-}adr.$  The initial sub-classification of  $\alpha\text{-}adrs$  into  $\alpha_{1A}$  and  $\alpha_{1B}$  subtypes was determined by receptor-binding experiments, using the competitive antagonist WB-4101 and the alkylating agent

chloroethylclonidine (CEC). Whereas the  $\alpha_{1A}$ -subtype displayed a moderate affinity for WB-4101 and was CEC-insensitive,  $\alpha_{1B}$ -adr exhibited a low affinity for WB-4101, but was sensitive to CEC. Following the initial cloning of the hamster  $\alpha_{1B}$ -adr, two additional cDNAs were cloned. <sup>40,41</sup>

The  $\alpha_{1A}$ -adr is the predominant receptor, causing vaso-constriction in many vascular beds, including the following arteries: mammary, mesenteric, splenic, hepatic, omental, renal, pulmonary, and epicardial coronary. It is also the predominant subtype in the *vena cava* and the saphenous and pulmonary veins. Together with the  $\alpha_{1B}$  receptor subtype, it promotes cardiac growth and structure. The  $\alpha_{1B}$  receptor subtype is the most abundant type in the heart, whereas the  $\alpha_{1D}$  receptor subtype is the predominant receptor, causing vasoconstriction in the aorta. There is evidence to support the idea that  $\alpha_{1B}$  receptors mediate behaviors such as reaction to novelty and exploration and are involved in behaviorial sensitization and in the vulnerability to addiction<sup>42</sup> (Table 7). The characteristics of the  $\alpha_1$ -adr subtypes are tabulated (Table 8).

**Table 7.** Subtypes of  $\alpha_1$ -adr (tissue localization and other dominant effects)

| Subtype       | Gene location in human chromosome | Tissue localization                                                                    | Subtype dominant effects                                                                                     |
|---------------|-----------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $\alpha_{1A}$ | 8                                 | Heart, liver, cerebellum, cerebral cortex, prostate, lung, vas deferens, blood vessels | Predominant receptors causing contraction of smooth muscle including vaso constriction in arteries and veins |
| $\alpha_{1B}$ | 5                                 | Kidney, spleen, lung, cerebral cortex, blood vessels                                   | Most abundant subtype in heart, with1A promotes cardiac growth structure                                     |
| $\alpha_{1D}$ | 20                                | Platelets, cerebral cortex, prostate, hippocampus                                      | Predominant receptor causing vaso constriction in the aorta and coronary arteries                            |

**Table 8.** Summary of  $\alpha_1$ -adr subtype characteristics

|                            | $\alpha_{1A}$                                                                                                                                                                     | $\alpha_{1B}$                                                                   | $\alpha_{\mathrm{1D}}$                                                     |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Previous names             | $\alpha_{1A},\alpha_{1B}$                                                                                                                                                         | $\alpha_{1B}$                                                                   | $\alpha_{1A},\alpha_{1A/D}$                                                |
| Functional response(s)     | Rat vas deferens contraction, rat<br>renal artery contraction, rat<br>caudal artery contraction, rat<br>isolated perfused kidney<br>vasoconstriction control of blood<br>pressure | Rat spleen contraction, role in rat tail contraction, control of blood pressure | Rat aorta contraction, control of blood pressure (hypertension)            |
| Ligand-binding assay       | Rabbit liver, rat submandibular gland                                                                                                                                             | Rat liver and spleen, transfected CHO and HEK 239 cells                         | Rat aorta, transfected CHO and HEK 239 cells                               |
| Non-selective agonists     | Phenylephrine, cirazoline, methoxamine                                                                                                                                            | phenylephrine, cirazoline, methoxamine                                          | Phenylephrine, cirazoline, methoxamine                                     |
| Selective agonists         | A61603, oxymetazoline                                                                                                                                                             | None                                                                            | None                                                                       |
| Non-selective antagonists  | Prazosin                                                                                                                                                                          | Prazosin                                                                        | Prazosin                                                                   |
| Selective antagonists      | For example, 5-methylurapidil, RS 17053                                                                                                                                           | L-765, 314                                                                      | BMY7378                                                                    |
| Potency order              | Noradrenaline ≥ adrenline                                                                                                                                                         | Noradrenaline = adrenalin                                                       | noradrenaline > adrenalin                                                  |
| Receptor distribution      | Brain, prostate, vas deferens,<br>heart, blood vessels                                                                                                                            | Spleen, kidney, brain, heart, blood vessels                                     | Brain, rat aorta, blood vessels                                            |
| Tissue function(s)         | Smooth muscle and myocardial contraction                                                                                                                                          | Smooth muscle contraction                                                       | Smooth muscle contraction                                                  |
| Sensitivity to CEC         | +/_                                                                                                                                                                               | +++                                                                             | ++                                                                         |
| Second messenger system(s) | Activation of Gq/11, increase in P                                                                                                                                                | I turnover with elevation of [Ca2+]i, acti                                      | ivation of voltage-gated Ca2+ channels                                     |
| Notes                      | A61603 also displays high affinity at $\alpha_2$ -adrenoreceptor subtypes; there are four known isoforms                                                                          | CEC also affects other receptors                                                | The rat aorta appears to contain other $\alpha_1$ -adrenoreceptor subtypes |

CEC, chloroethylclonidine; PI, phosphoinositol; CHO, Chinese hamster ovary; HEK 203, human embryonic kidney cells.

#### 3.2. Significance of receptor subtypes

As the diversity and selectivity increases, it is evident that multiple subtypes of receptors exist within many previously defined classes. Molecular cloning has further accelerated discovery of novel receptor subtypes and their expression as recombinant proteins has facilitated

discovery of subtype-selective drugs. When selective ligands are not known, the receptors are more commonly referred to as isoforms rather than as subtypes. Receptor subtypes may display different mechanisms of signal output. The  $\alpha_{1A}$ ,-  $\alpha_{1B}$ -, and  $\alpha_{1D}$ -adr isoforms differ little in their biochemical properties, although their tissue distribution is distinct<sup>43</sup> (Table 9).

**Table 9.** Subtypes of  $\alpha_1$  and  $\alpha_2$  adrenergic receptors<sup>43</sup>

| Sub type               | Selective agonists | Selective antagonists               | Tissue localization                           | Biological effect                                                                         |
|------------------------|--------------------|-------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| $\alpha_{1A}$          | Not available yet  | 5-Methylurapidil<br>(+)-Niguldipine | Heart,<br>Liver,<br>Vas deferens              | Increased force and rate of contraction<br>Glycogenolysis, Gluconeogenesis<br>Contraction |
| $\alpha_{1B}$          | Not available yet  | Not available                       | Kidney, spleen, aorta, lung, cerebral cortex  | Smooth muscle contraction                                                                 |
| $\alpha_{1\mathbf{D}}$ | Not available yet  | Not available                       | Aorta, cerebral cortex, prostate, hippocampus | Smooth muscle contraction                                                                 |

Additional  $\alpha_{1}$ -adr subtypes have been proposed, these are namely  $\alpha_{1L}$ ,  $\alpha_{1H}$ , and  $\alpha_{1N}$  based on their affinity of prazosin namely,  $\alpha_{1H}$  ( $K_b < 1$  nM)  $> \alpha_{1L}$  ( $K_b > 2$  nM)  $\geq \alpha_{1N}$  ( $K_b > 2$  nM). However,  $\alpha_{1N}$ -adr has higher affinity for yohimbine ( $K_b < 100$  nM) compared to  $\alpha_{1L}$ -adr ( $K_b > 300$  nm). However, clear cut location of these subtypes is yet to be confirmed.

#### 3.3. $\alpha_1$ -Adrenergic receptor antagonists

3.3.1. Introduction. The discovery of prazosin followed the investigation of the blood pressure lowering effect of 4-aminoquinazolines. The candidate compound prazosin is the 4-aminoquinazoline, which lowered blood pressure involving a component of sympathetic inhibition at the peripheral site or central sites. Unlike previous  $\alpha$ -blockers such as phentolamine, prazosin has significantly less cardio-stimulatory effects. Such difference can now be explained on the basis of  $\alpha$ -adr subtype.

Prazosin is the prototype of an  $\alpha_1$ -adr receptor antagonist and idozoxan is the prototype of  $\alpha_2$ -adr antagonists. Prazosin selectively blocks postsynaptic  $\alpha_1$ -adr while having no effect on presynaptic  $\alpha_2$ -adr, responsible for the inhibition of norepinephrine release from sympathetic nerve. 44

Phentolamine, by contrast non-selectively inhibits both  $\alpha_1$ - and  $\alpha_2$ -adrs resulting in a greater activation of sympathetic nerves.

3.3.2. Chemistry. The first series of adrenergic blocking agents that acted at what was later designated ' $\alpha$ -receptor' were the haloalkylamines, represented by phenoxybenzamine. These compounds were related to nitrogen mustards and cyclized to form reactive ethylinimonium intermediates. In addition to  $\alpha$ -adr blockade, these agents also inhibited response to serotonin, histamine, and acetylcholine. Phenoxybenzamine was used by oral and IV administration, but was limited by marked hypotension and reflex tachycardia.

The next important development came from a series of 2-substitutedimidazolines observed to have histamine like depressed activity, From these studies came phentolamine which was shown to reverse the pressor response to epinephrine. Phentolamine is still being used in the management of hypertensive emergencies, but its use is limited by orthostatic hypotension and reflex cardiac stimulation. Although many other molecules have subsequently shown to have sympatholytic or adrenolytic activity, prazosin was the first  $\alpha$ -blocker suitable for chronic oral treatment of essential hypertension. Prazosin was chosen from a series of dimethoxyguinazolines for its potency and duration of action, 2-furoylpiperazine was preferred over simpler ester or the simple dimethylamine substituent. The duration of the half-life of prazosin is approximately 3 h. Simple saturation of furan rings is terazosin with increased lipid solubility and with a half-life of approximately 12 h. Further increase in half-life (reduced metabolism) was accomplished with doxazosin, which contains a bulky replacement of furan ring.45

#### 3.3.3. Uses and applications.

3.3.3.1. Comparative efficacy. The use of  $\alpha_1$ -adr blockers for the treatment of hypertension has been limited due to concerns that they are less effective than other antihypertensive drugs and that tolerance develops with continued use. Monotherapy with an  $\alpha_1$ -blocker has been effective in controlling blood pressure in 50–60% of

patients. The 7th report of the Joint National Committee on the detection, evaluation, and treatment of hypertension  $^{46}$  has given a list of various 14 categories of oral antihypertensive drugs considered suitable for the initial treatment of hypertension. One of these categories is the  $\alpha_1$ -blockers, which includes doxazosin, prazosin, and terazosin.

Tolerance did occur when  $\alpha_1$ -blockers were used as after-load reducers in patients with CHF. However, tolerance does not develop to the antihypertensive effects and patients treated with  $\alpha_1$ -blockers have demonstrated continued blood pressure control for several years. Like the ACE inhibitors and Ca<sup>2+</sup> channel blockers,  $\alpha_1$ -adr blockers have not been studied in large, randomized clinical trials for the prevention of hypertension related complications. Their ability to prevent strokes, coronary heart disease events, or the progression of renal disease is known.<sup>47</sup>

3.3.3.2. Comparative safety. Postural hypotension (usually most significant after the first dose of the drug and occasionally resulting in syncope) is the most significant side effect of the  $\alpha_1$ -blockers. 'First dose syncope' was a common problem when large initial doses of prazosin (2 mg) were used. The incidence of first dose hypotension reported with terazosin and doxazosin is lower (<2%) reflecting a more gradual onset of their hypotensive effect and the use of lower initial doses. Postural hypotension can be minimized by starting with low doses (see table for recommended initial doses of each drug), increasing the dose gradually (minimum of 3 days between dosage titrations), and administering the drug at bedtime. Dizziness, headache, and fatigue are the most common side effects associated with the  $\alpha_1$ blockers.

3.3.3.3. Role in hypertension. The  $\alpha_1$ -adr blockers can be used for the initial treatment of HT (and may be preferred in patients with BPH, that is, benign prostatic hypertrophy). However, they probably have a larger role in combination with other antihypertensive drugs when diuretics and  $\beta$ -blockers cannot be used.<sup>47</sup>

#### 3.4. Demerits of currently used adrenoceptor antagonists

The discovery and development of especially, prazosin and its congeners, terazosin, trimazosin, doxazosin, etc., bearing a very high index of  $\alpha_1$ -/ $\alpha_2$ -adr affinity have triggered off a renaissance of interest in  $\alpha_1$ -adr antagonist drugs. Also, they have many advantages like dictating both resistance and capacitance of blood vessels. They are widely used for the management of arterial hypertension. However, their lack of specificity at the level of  $\alpha_1$ -adrenoreceptor subtypes leads to multiple side effects.

Existence of multiple  $\alpha_1$ -adr subtypes holds great promise for the discovery and development of more specific selective drug molecules, targeting only one  $\alpha_1$ -adr subtype and free from side effects. Thus, today medicinal chemists worldwide are involved in design and synthesis of very specific  $\alpha_1$ -adr subtype antago-

nists. Herein, in the forthcoming sections an attempt has been made to review the literature on the research done on the discovery and evaluation of a variety of chemically diverse structures as selective antagonists of  $\alpha_1$ -adr and  $\alpha_1$ -adr subtypes in recent years.

#### 4. Recent advances in $\alpha_1$ -adrenoceptor antagonists

The effort to design agents as selective antagonist for each of the three  $\alpha_1$ -adr subtypes has been an area of active research. Therapeutically  $\alpha_{1A}$ -adr antagonists might be useful in the treatment of benign prostatic hyperplasia (BPH).  $^{48-53}$ 

Recently, a role for the  $\alpha_{1B}$ -adr subtype in the regulation of blood pressure has been advanced,<sup>54</sup> whereas a potential therapeutic use for the  $\alpha_{1D}$ -adr subtype has not been firmly established. Yet they may have a role in the control of blood pressure because of their involvement in the contraction of a variety of vessels.<sup>55</sup> Furthermore, the  $\alpha_{1D}$ -adr is predominant in the detrusor muscle and is upregulated in the detrusor of obstructed rats.<sup>56</sup> This suggests a relevant role also for this subtype, in the control of the symptoms associated with BPH. Although the collection of  $\alpha_1$ -adr antagonists presented in this section covers a range of structural types, all the compounds possess a central basic center flanked on at least one side by aromatic systems. The presence of a protonated form of the molecule, at physiological pH appears to be a vital feature for  $\alpha_1$ -adr antagonists. However, the precise profile in terms of subtype selectivity is heavily dependent on the nature of the basic center, the substitution of the aromatic rings, and the spatial orientation of the groups. The following overview separates the agents into structural classes defined by the basic center and discusses briefly how  $\alpha_1$ -adr subtype selectivity varies within each series.

The different agents discussed are as follows:

- 4.1. 2,4-Diamino-6,7-dimethoxyquinazolines
- 4.2. 1,4-Benzodioxans and related compounds
- 4.3. Dihydropyridines and dihydropyrimidines
- 4.4. Fused pyrimidindiones
- 4.5. Pyridazinone derivatives
- 4.6. Imidazolines and fused imidazolines
- 4.7. N-Arylindoles
- 4.8. N-Aryl and N-heteroaryl piperazine derivatives
- 4.9. Miscellaneous compounds

#### 4.1. 2,4-Diamino-6,7-dimethoxyquinazolines

**4.1.1. Introduction.** This is the most effective and clinically used class of selective  $\alpha_1$ -adr antagonists as antihypertensive agents. These derivatives have a very high index of  $\alpha_1$ -/ $\alpha_2$ -adr affinity that triggered off a renaissance of interest in the treatment of hypertension using these drugs. As a logical approach for the effective management of arterial hypertension, prazosin, and its analogues such as

terazosin 2,<sup>58</sup> doxazosin 3,<sup>59</sup> tiodazosin 4,<sup>60</sup> bunazosin 5,<sup>61</sup> afluzosin 6,<sup>62</sup> and trimazosin 7<sup>63</sup> are employed clinically, as they are vasodilators with strong action in the arteriolar vascular bed. Further, they have many advantages like dictating both resistance and capacitance of blood vessels, favorable hemodynamic effects, virtual absence of reflux tachycardia, and maintenance of renal blood flow and glomerular filtration rate with intact auto regulation

of noradrenaline due to non-blockade of presynaptic  $\alpha_2$ -adr. They also have favorable effects on the lipid profile, carbohydrate metabolism, and insulin resistance. These drugs are also useful in the treatment of Congestive Heart Disease (CHD), Variant or Prinzmetal's Angina, Raynauds disease, etc. However, there is a need of developing more specific analogues with specific affinities to receptor subtypes to remove their side effects.  $^{57}$ 

Though they are used widely for the management of arterial hypertension, their lack of specificity at the level of  $\alpha_1$ -adr subtype leads to multiple side effects, which includes postural hypotension, syncope and first dose phenomena. The existence of multiple  $\alpha_1$ -adr subtypes holds promise for the discovery and development of more specific selective drug molecules targeting only one receptor subtype and making them free from side effects. <sup>57</sup> Toward this aim wide ranging modifications have been reported on the basic structure.

The structure–activity relationship (SAR) studies on the prazosin analogues reveal some important points of modifications as seen from the various literature reports, which are discussed herein chronologically. The 4-amino group is an integrally essential part for the  $\alpha_1$ -adr antagonist activity of this class of compounds (Fig. 4).

**4.1.2.** Modifications made in/on the pyrimidine ring of 4-amino-6,7-dimethoxyquinazoline nucleus. The 2,4-diaminoquinazoline ring though seems to be very essential for the  $\alpha_1$ -adr receptor antagonist activity, the bioisosteric replacement of quinazoline with quinoline moiety, as seen in compounds **8** and **9** without adversely affecting their activities indicates that the  $N_1$  atom of the quinazoline is essential for the activity, while the  $N_3$  can be replaced.<sup>64</sup>

The lack of activity in the isoquinoline analogues 10 and 11 even at higher doses, further substantiates the importance of the  $N_1$  atom for the activity.<sup>65</sup>

Active

**Figure 4.** Points of modifications in the 2,4-diamino-6,7-dimethoxy-quinazoline nucleus.

Inactive

With the aim of improving the selectivity profile at  $\alpha_1$ adr, in a study, prazosin was further modified affording a series of derivatives, in which the N<sub>1</sub> atom is present, often included in a different cyclic system. Modification of the quinazoline system into a tetrahydroacridine ring 12 was thus carried out. This structural modification, in addition to preserving the basicity of  $N_1$ , could force the N<sub>1</sub> and the furan moiety to assume a reciprocal arrangement, similar to that of prazosin in one of its low-energy confirmations. Moreover, since the N<sub>3</sub> function is not essential for the  $\alpha_1$ -adr affinity, it was thought that its removal should not negatively affect activity of these tetrahydroacridine derivatives at  $\alpha_1$ -adr. These derivatives 12 and 13 had the liner fusion of cyclopentane, cyclohexane, and cycloheptane rings to the 4-aminoquinazoline ring system, 12 (n = 1, 2, 3). 66 However, the whole series of derivatives resulted to be less potent at all  $\alpha_1$ -adr subtypes, relative to the prototype.<sup>67</sup>

$$H_3CO$$
 $H_3CO$ 
 $H_3CO$ 

Another closely related series **14** was synthesized. Ligand-based design (pharmacophore development) methods have been used to design this novel 1,2,3-thiadiazole ring D analogues of the aporphine system. Synthesis and design of these compounds as a ligand on cloned and expressed human  $\alpha_1$ -adr have been studied. Low-binding affinity for most of the derivatives was found, possibly due to an unfavorable electrostatic potential distribution.

The ring D thiadiazole analogue **14** of the aporphine system had very low affinity for the  $\alpha_1$ -adr, whereas the ring D indole analogue **15** showed high affinity for the  $\alpha_1$ -adr subtypes comparable to aporphine.<sup>68</sup>

It is worth mentioning that the 6,7-dimethoxy groups of the parent prazosin structure are extremely essential for the selective  $\alpha_1$ -adr antagonist activity. This can be seen in all the above discussed modifications like compounds 1–15 wherein these two methoxy groups were preserved.

However, there is a report indicating the replacement of the dimethoxybenzene with dimethylpyridine ring. Thus, a series of 4-amino-5,7-dimethyl-2-(substituted)amino-pyrimidines was designed using structurebased approach, to study the importance of the dimethoxybenzene ring for selective  $\alpha_1$ -adr antagonist activity. Some of the synthesized compounds exhibited significant α<sub>1</sub>-adr antagonistic activity. Compound 16 exhibited in vivo activity (p $A_2 = 7.8$ ) comparable to that of the standard drug prazosin (p $A_2 = 8.0$ ). Further, it was found more potent than prazosin when screened by the in vivo method (lowering of blood pressure of spontaneously hypertensive rats). This study revealed that the replacement of the dimethoxybenzene ring of prazosin by a bioisosteric pyridine ring did not affect the  $\alpha_1$ -adr antagonistic activity.<sup>69</sup>

**4.1.3. Modifications involving the 2-piperazinyl ring. 4.1.3.1. Replacement of the 2-piperazine ring.** In many cases the piperazine ring at the 2-position has been replaced by its 4-deaza analogue, the piperidine ring system bearing a carboxamide moiety on its 4th position. It has been observed that the increase or decrease in the activity is rather related to the substitutions on this 4-carboxamido moiety. Thus, while the primary carboxamide in **17** was active even in nanomolar range, improvement in potency was observed by both alkyl and cycloalkyl substituents. However, shifting the position of the carboxamide function to the 3rd position was detrimental, leading to 13- to 100-fold decrease in the activity as seen in compound **18**.70

Interestingly, replacement of this carboxamido system with ethylenedioxyalkyl groups as seen in the series of compounds **19**, led to an increase in the  $\alpha_1$ -adr affinity and potency compared to prazosin.<sup>71</sup>

Replacement of piperazine ring with isoquinoline ring as in **20** was also tried. The compound was found to be a very potent  $\alpha_1$ -adr antagonist.<sup>72</sup>

**4.1.3.2.** Modifications involving ring opening, ring expansion or C-substitution of the 2-piperazinyl ring. Studies reported by Italian workers have indicated that compound 21, bearing a 1,6-hexamethylenediamine moiety, was the most active of the series, being more potent than prazosin in both in vivo and in vitro evaluations. From these results is advanced the hypothesis that the  $\alpha_1$ -adr incorporates a lipophilic area, located between the binding sites for the quinazoline and the furan ring of prazosin, which is able to accommodate optimally a 1,6-disubstituted hexane moiety. However, compound 21 gives only limited information on the size and possible stereochemical requirements of this lipophilic area, because its polyethylene chain is very flexible and can assume many conformations.

A series of compounds were designed in which the polymethylene chain at the position 2 is incorporated partially or completely into a constrained structure. It was thought that this structural modification would afford the compounds in which the quinazoline and furan rings appear in a position quite similar to that of prazosin, hopefully to give information on the size and spatial orientation of the lipophilic pocket. 1,2-Cyclohexanediamines 22, mono- and di-substitutedpiperazines 23, decahydroquinoxalines 24, and related compounds were studied. Insertion of alkane chain of 21 into a decahydroquinoxaline nucleus increased the selectivity and affinity for  $\alpha_1$ -adr. The selectivity of  $\alpha_1$ -adr is strictly

related to the presence of a piperazine ring, especially when its flexibility is further reduced by replacing it by a *cis*-decahydroquinoxaline moiety. The quinoxalinyl derivative cyclazosin **24** proved not only a potent and selective  $\alpha_1$ -adr antagonist, but also to be an effective antihypertensive agent.<sup>74</sup>

In a recent study on cyclazosin analogues, substituents were introduced at position 5 of its 2-furoyl moiety, as well as, its replacement with classical isosteric rings was investigated. The 5-methylfuryl derivative (+)-25, [(+)-metcyclazosin], improved the pharmacological properties of the progenitor, displaying a competitive antagonism, and an 11-fold increased selectivity for  $\alpha_{1B}$  over  $\alpha_{1A}$ , while maintaining a similar selectivity for the  $\alpha_{1B}$ -adr relative to the  $\alpha_{1D}$ -adr. 75

Another approach was to incorporate new structural elements into the piperazine subunit. Moderate  $\alpha_{1B}$  selectivity was induced by incorporating an (s)-tert-butylcarboxamido group at the  $C_3$  of the piperazine moiety, as in compound 26. One plausible explanation for this is that the 3-carboxamido group can form a hydrogen bond with a binding site within the  $\alpha_{1B}$ -receptors. Another possibility is that a steric discrimination could be established. This explanation is consistent with the  $\alpha_{1B}$ -selectivity observed for the (+)-enantiomer of cyclazosin, which bears a bulky substitution on the piperazine core ring. <sup>76</sup>

$$H_3CO$$
 $H_3CO$ 
 $H_3C$ 

Cyclazosin 24

Many derivatives of doxazosin 3 were synthesized in which the 1,4-benzodioxan moiety was explored with the aims to preserve the  $\alpha_1$ -adr affinity and selectivity, and to prolong the duration of antihypertensive activity, so that only a single dose/day may be sufficient in an adult. Most of the members of this series displayed high (ca.  $10^{-9}$  nM) affinity for  $\alpha_1$  receptors and no compound showed any significant activity (> $10^{-6}$  nM) at  $\alpha_2$  sites. Some of the important observations based on the modifications tried in a series of compounds, 27 and results obtained thereof are as follows:

- (a) Mono-substitution on the aromatic ring of 27 with 8-methoxy, 8-methyl, or 7-acetyl groups preserved high  $\alpha_1$ -adr activity, while there were only small reductions in potency with the 6-methoxy and 6-acetyl isomers. Larger substituents or di-substitutions were also well tolerated. These results suggested considerable scope for the modification of the aromatic moiety but, unexpectedly, the mono or dichloro derivatives were some 11-fold less active than doxazosin.
- (b) Introduction of methyl groups into the 1,4-benzodioxan system at the 2- or 3-positions gave compounds essentially equipotent with doxazosin.
- (c) Expansion of benzodioxan or piperazine ring was also acceptable, but the 3-methylpiperazino derivative had slightly reduced activity. A 24-h control of blood pressure is achieved after single daily dosing (0.5 mg/kg, po) and an extended plasma half-life (4.7 h) over prazosin (2.8 h) is consistent with improved duration of antihypertensive activity<sup>77,78</sup> with some of the compounds of this series.

**4.1.3.3.** Complete opening of the piperazine ring. It is observed that intact piperazine ring at position 2 is not essential for the activity. Based on this, the synthesis and biological activity of some *N*-[(acylamino)alkyl]-6,7-dimethoxy-2,4-quinazoline diamines

was carried out and it was found that the anti-hypertensive properties of these new molecules appear to strongly depend on the length of the alkylamine chain, the size, and nature of the R<sup>1</sup>, R<sup>2</sup>, and R<sup>3</sup> substituents. Maximum activity was observed in compounds having a propyl chain between the two nitrogen atoms and having R<sup>1</sup> as a methyl group, R<sup>2</sup> as a hydrogen atom or a methyl group and R<sup>3</sup> as an unsubstituted aromatic or heterocyclic/alicyclic ring such as furan, tetrahydrofuran, or cyclopentane. Compounds 28–30 were found to be the most potent derivatives as anti-hypertensive agents form this study.<sup>79</sup>

**28:**  $n=3, R^3=Cn_3, R^2=H, R^3=C_6n_5$  **29:**  $n=3, R^1=Cn_3, R^2=H, R^3=tetrahydro-2-furyl$ **30:**  $n=3, R^1=Cn_3, R^2=H, R^3=Cyclopentyl$ 

Further, the compounds of the type 31 bearing a secondary and tertiary nitrogen atom in the polyethylenediamine chain were found to be highly selective toward  $\alpha_1$ -antagonists. <sup>73</sup>

Since cyclazosin 24 incorporates a decahydroquinoxaline in a cis relationship, which is responsible for the high affinity for  $\alpha_1$ -adr and bears two chiral centers in a different position relative to terazosin, it was thought to investigate whether the enantiomers might be able to discriminate among  $\alpha_1$ -adr subtypes. This study demonstrated that the replacement of the piperazine ring of prazosin with a cis-decahydroquinoxaline moiety affording (+)-24 does not affect the affinity for  $\alpha_1$ -adr, while it significantly decreases the affinity for  $\alpha_1$  ( $\alpha_{1B}$ -adr subtypes) in comparison to prazosin. The overall result of this structural modification is a significant improvement in selectivity toward the  $\alpha_{1B}$ -adr. Thus, (+)-cyclazosin [(+)-24] emerges as a valuable tool for the characterization of  $\alpha_1$ -adr subtypes owing to its unprecedented selectivity for  $\alpha_{1B}$ -adr, associated with high potency.80

The simultaneous replacement of both piperazine and furan ring of prazosin gave 32, which resulted in a potent, selective  $\alpha_{IB}$ -adr antagonist (85- and 15-fold more

potent than prazosin, at the  $\alpha_{1A}$  and  $\alpha_{1D}$ -adr subtypes, respectively). Insertion of a substitution in the benzene ring of the 32 affected, according to the type and the position of the substituents, affinity and selectivity for  $\alpha_1$ -adr. Consequently, the insertion of appropriate substituents in the phenyl ring of 32 may represent the basis of designing new selective ligands for  $\alpha_1$ -adr subtypes. Interestingly, the finding that polyamines 33–35 bearing a 1,6-hexanediamine moiety, retained high affinity for  $\alpha_1$ -adr subtypes, suggests that the substituents did not give rise to negative interactions with the receptor.<sup>81</sup>

Tetramine disulfides derivatives 36 were designed by combining the structural features of benextramine 37, an irreversible  $\alpha_1$ -/ $\alpha_2$ -adr antagonist and prazosin. Some compounds showed up to 11-fold selectivity for  $\alpha_{1B}$ -adr in contrast to both prazosin and benextramine, which are not selective for the  $\alpha_{1B}$  and  $\alpha_{1A}$ -subtypes, respectively. Surprisingly, none of the hybrid tetramine disulfides, unlike benextramine, irreversibly inhibited  $\alpha_1$ -adr (actually found 5- to 80-fold lower than prazosin). 82

A novel series of quinazolines related to prazosin and its two open chain amino analogue, **38** was synthesized and evaluated for antagonistic activity on  $\alpha_1$ -adr subtypes. The cystamine bearing quinazoline **39** (cystazosin) of this series has a reversed affinity profile relative to (+)-cyclazosin, owing to its higher affinity for  $\alpha_{1D}$ -adr and a significantly lower affinity for the  $\alpha_{1A}$  and  $\alpha_{1B}$  subtypes. Cystazosin **39** displays a much better specificity profile since it has a lower affinity for  $D_2$  and 5-HT<sub>1A</sub> receptors. <sup>83</sup>

Hybrid tetramine disulfides 40 were synthesized by combining the structural features of prazosin and benextramine. Their biological profiles at  $\alpha_1$ -adr subtypes were assessed on isolated rats vas deferens ( $\alpha_{1A}$ ), spleen  $(\alpha_{1B})$ , and a rta  $(\alpha_{1D})$ . To verify the role of the disulfide moiety on the interactions with  $\alpha_1$ -adr subtypes, the carbon analogues 41 were also included in this study. All quinazolines lacking the disulfide bridge behaved, like prazosin, as competitive antagonists, whereas all polyamine disulfides 40 displayed a non-homogeneous mechanism of inhibition of three subtypes, like benextramine, as non-competitive antagonists at the  $\alpha_{1A}$  and  $\alpha_{1B}$  subtypes, while being competitive antagonists at the  $\alpha_{\rm 1D}$ . On the other hand, polyamines 42 emerged as promising molecules for the characterization of  $\alpha_1$ -adr subtypes, owing to their receptor subtype selectivity.<sup>84</sup>

**4.1.4.** Modifications involving the replacement of the furoyl moiety. In order to clarify further the importance and the function of the furoyl  $\pi$  system, the synthesis and pharmacological properties of a series of 2-(4-heterocyclylpiperazin-1-yl)quinazolines **43** are reported. <sup>85</sup> For these compounds, the carbonyl moiety was replaced by a heteroaromatic  $\pi$  system, which also allows the influence of dipole direction to be probed. In addition, modification of heterocyclic substitution permits optimization of hydrophobic interaction. Results demonstrate that the heteroaryl moieties in this series provide effective replacement for the carbonyl function present in

prazosin. The similar potency shown by these isomeric derivatives with prazosin suggests that neither the magnitude nor the direction of heteroaryl or carbonyl dipoles has any particular influence on  $\alpha_1$ -adr interactions. However, activity results that the unsubstituted 2-piperazin-1-yl quinazoline 44 has an increase in  $\alpha_1$ -binding affinity of at least 100-fold confirm that appropriate substituents in this area of the quinazoline nucleus can have a profound effect on receptor affinity.

A new series of prazosin analogues comprising N-acyl derivatives of N'-(4-amino-6,7-dimethoxyquinazolin-yl)piperazine **44** was prepared and the nature of their binding to  $\alpha_1$ -adr was investigated. A very high affinity and irreversible binding was observed with the bicyclo[2.2.2]octa-2,5-dien-2-ylcarbonyl derivative, SZL-49 **45**.86

Recent results have shown that furoxan derivatives are able to activate the soluble guanylate cyclase by releasing nitric oxide under the action of thiol co-factors. Since NO is involved in many bioregulatory processes, the furoxan system could be used in the designing of a variety of hybrid molecules. Synthesis of furoxan analogues of prazosin, in which the phenyl (or methyl) furoxanylcarbonyl system was substituted for the 2-furonylcarbonyl moiety was carried out with the aim to develop new vasodilators, capable of displaying NO-dependant effect on the micro and macrovascular systems, mixed with the  $\alpha_1$ -adr antagonist activities. When the vasodilating activities of these compounds were assessed on the epididymal portion of rat vas deferens, the results showed that all the hybrid compounds were strongly or completely biased toward  $\alpha_1$ -

antagonist properties. <sup>87</sup> Later on, the design and synthesis of prazosin analogues **46** and **47** were undertaken. Both series of compounds exhibited same potency. This supports the working hypothesis that the sulfonemethylene group could be used as a bio-isosteric moiety of the amide function in the design of new analogues. These derivatives display antagonistic activity similar to that of prazosin and NO-vasodilating properties near to that of sodium nitroprusside. On the whole, these results show that the substituted furoxan ring is a very flexible system in the designing of hybrids in which a NO-dependant activity can be mixed with mutually complementary biological activity. <sup>88</sup>

Studies with a series of tetramine disulfides related to benextramine suggest that in the surface of  $\alpha_1$ -adr, a thiol group, able to irreversibly react with the disulfide moiety of the drug, is present. On this basis design of a new series of compounds, 48 and 49, as potential irreversible  $\alpha_1$ -antagonists structurally related to prazosin was made. When benzoyl moiety is substituted for the 2-furoyl structure, the resulting molecule 50 retains high affinity and selectivity for the  $\alpha_1$  receptor.

A novel series of piperazine and non-piperazine derivatives of 2,4-diamino-6,7-dimethoxyquinazoline, **51** and **52** were synthesized and evaluated for their binding affinities toward  $\alpha_1$ -adrenergic receptors. <sup>91</sup> Of the various compounds synthesized and evaluated, **51** showed moderate selectivity toward  $\alpha_{1B}$ -adr subtype, whereas compound **52** showed in vivo potency close to that of prazosin. <sup>92</sup>

R=COR',COAr, CO(CH<sub>2</sub>)nCOR', CO(CH<sub>2</sub>)n-OAr R'=alkyl, Ar=disubstituted aryl

To combine in the same molecule, the  $\alpha_1$ -adr blocking and antioxidant properties, compounds **53** and **54** were designed and synthesized. All compounds were effective  $\alpha_1$ -adr antagonists and were tested by both functional and binding assays. In addition, these compounds also displayed significant capacity to inhibit intracellular oxidative stress, as well as, potent antiproliferative activity in lymph node carcinoma of prostate cells. While in compounds **53** the furoyl moiety of prozosin was replaced with the lipoyl fragment of lipoic acid and its homologs, in compound, **54**, it was replaced with 1,4-naphthoquinone. <sup>93</sup>

#### 4.2. 1,4-Benzodioxans and related compounds

Benzodioxans represent one of the oldest and best known class of  $\alpha$ -adr antagonists, which involve chemical structures incorporating a 1,4-benzodioxan-2-yl moiety as the main structural feature responsible for the  $\alpha_1$ -adr

antagonist activity. Compound, WB 4101 **55**, (N-[2-(2,6-dimethoxyphenoxy)ethyl]-2,3-dihydro-1,4-benzodioxan-2-methanamine), is the prototype of  $\alpha_1$ -adr antagonists bearing a benzodioxan moiety. Several investigations have been devoted to improving both affinity and selectivity of these compounds. Both the benzodioxan-2-yl and (2,6-dimethoxyphenoxy)ethylamino moieties are reported to be essential for the activity. As a result, a variety of analogues have been studied involving modifications at the benzodioxan ring, the amine function, or the (2,6-dimethoxyphenoxy)ethyl moiety.  $^{94,95}$ 

The following points of modifications have been explored on the basis of the structure—activity relationships of 1,4-benzodioxan-related compounds. These points are discussed in subsequent sections, with respect to compound 55 (see Fig. 5).

**4.2.1.** Modifications done on the 1,4-benzodioxan and phenoxy ring systems. Replacement of ring oxygen at position 4 of the benzodioxan ring of WB 4101 with sulfur atom as in the benoxathian **56**, did not modify the biological profile, but rather gave a potent and highly selective  $\alpha_1$ -adr antagonist.  $^{96,97}$ 

The various structural modifications performed on the benzodioxan ring system include replacement of hydrogens at 2- or 3-position with a variety of substituents. Insertion of a phenyl ring at position 3 having a *trans* relationship with the side chain at 2, afforded phenodioxan 57, (*trans-N*-[2-(2,6-dimethoxyphenoxy)ethyl]-2,3-dihydro-3-phenyl-1,4- benzodioxan-2-methanamine). Although, this compound was less active than the parent compound (five times less potent), it was over three orders of magnitude more potent than the *cis* isomer at the  $\alpha_1$ -adr. How-

Figure 5. Points of modifications in the 1,4-benzodioxan nucleus.

ever, the insertion of phenyl ring at the position 3 of **55** is highly detrimental toward the  $\alpha_2$ -adr activity either in *trans* or *cis* relation with respect to the side chain at position 2. This derivative, namely, phenodioxan was considered as the most potent derivative for the selective  $\alpha_1$ -adr subtype in the benzodioxan series.<sup>99</sup>

Further, replacement of the 3-phenyl group of 57 by methyl, isopropyl, cyclohexyl, or p-substitutedphenyl groups either in cis or trans relationship relative to the side chain at position 2 led to compounds though having better  $\alpha_1/\alpha_2$  selectivity, but except for the derivative bearing the p-methylphenyl substitution at position 3, none of them showed selectivity for the  $\alpha_1$ -adr subtype. These results imply that the 3-substitution endows a significant role in the modulation of selectivity for  $\alpha_1$ -adr subtypes. These findings led to the development of mephendioxan 58, a p-tolyl analogue of phendioxan. This work has demonstrated that the insertion of a trans aryl substituent at position 3 of 57 increases the affinity and selectivity for  $\alpha_{1A}$ -adr, while significantly decreasing the affinity for  $\alpha_2$ -adr, 5-HT<sub>1A</sub> and D<sub>2</sub>, receptors in comparison to the prototype. Furthermore, it has been shown that the affinity and selectivity for  $\alpha_{1A}$ -adr resides predominantly in the enantiomer, (–)-mephendioxan [(-)-58]. <sup>101</sup>

By taking as a starting point, prototype 55 (WB-4101), subtle variations at positions 1 and 4 have been made to assess how affinity and selectivity for  $\alpha_1$ -adr receptor subtype can be markedly affected by making following changes in the prototype structure 55: (a) by inserting carbonyl group at 4 as in 59, (b) by replacing the oxygen atom at position 1 by a carbonyl group and at 4 by a sulfur atom, as in 60 or a methylene group, as in 61, (c) by replacing the oxygen atom at position 4 by a methylene group affording 62 and 63, and (d) by replacing the oxymethylene moiety by a vinyl group as in compound 64. These modifications however, did not improve the biological profile of these molecules with some exception of compound 59. But all these compounds have same selectivity profile at the  $\alpha_1$ -adr. Compound 59 is more selective to  $\alpha_{1A}$ -adr subtype than to the  $\alpha_{1B}$  and  $\alpha_{1D}$ adr subtypes. Compound 60 and 61 shows significant decrease in affinity for all the three  $\alpha_1$ -adr subtypes. The affinity for  $\alpha_{1A}$ -adr further dropped in case of compound **64** compared to compounds **59–63**, indicating the importance of oxygen or carbonyl at position 1 in these compounds. Compound **64** however, retained high affinity for  $5\text{-HT}_{1A}$  receptors. <sup>102</sup>

Further modifications in WB 4101, to optimize the activity by fusion of cyclohexane as in 65 or an additional benzene ring as in 66 with benzodioxan or additional benzene ring fused to the phenoxy moiety as in 67, were tried and evaluated for the possible significant modulations in activity and selectivity. <sup>103</sup> Thus, through a planned short sequence of modifications, consisting of introducing an additional or fused benzene or cyclohexane ring into the benzodioxan or the phenoxy portion of WB 4101 enantiomers and finally hybridizing two of these modifications, led to the identification of a new, potent, highly specific  $\alpha_{1A}$ -adr antagonist, (S)-68, in which a tetrahydronaphthodioxane and a 2-methoxy-1-naphthoxy residue were used. This new  $\alpha_{1A}$ -adr antagonist, (S)-68, hybridizes the high antagonistic affinity of both the parent compounds, 65 and 67. <sup>104</sup>

**4.2.2. Opening of the 1,4-dioxan ring system.** Opening the dioxan ring of **55** through the cleavage of  $C_2$  and  $C_3$  bonds gave **69**, which was a very potent ligand at  $\alpha_1$ -adr, while retaining the affinity for 5-HT<sub>1A</sub> receptors (although the affinity for the latter was 22- to 174-fold lower than that for the former one). This structural modification also resulted in an inversion of the selectivity profile, as **69**, was more potent at  $\alpha_{1D}$ -adr than at  $\alpha_{1A}$  and  $\alpha_{1B}$ -adr subtypes. <sup>102</sup> Quaglia et al. <sup>105</sup> studied the antitumor activity of these open chain analogues of **55** due to their selectivity toward  $\alpha_{1D}$ -adr. All the compounds of this series showed greater affinity for  $\alpha_{1D}$ -adr particularly the 4-chlorophenylmethoxy derivative **70**, which had more significant  $\alpha_{1D}$ -selectivity and a higher lipophilic character with respect to doxazosin.

Pharmacological properties of a novel, selective  $\alpha_1$ -adr antagonist, N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-α,α-dimethyl-1*H*-indole-3-ethanaminehydrochloride 71 (RS-17053) was studied and it was found to be a potent and selective  $\alpha_1$ -adr antagonist. The low affinity of RS-17053 in antagonizing contractions of human lower urinary tract tissues to norepinephrine provides strong evidence against pharmacological identity of this  $\alpha_1$ -adr subtype with the cloned and native  $\alpha_1$ -adr. In this regard, RS-17053 is not singular, as several other  $\alpha_1$ -adr antagonists (prazosin, WB 4101, S-(+)-niguldipine, and SNAP 5089) also distinguish between the two adrenoceptors. It is clear that the three fully defined  $\alpha_1$ -adr subtypes do not describe satisfactorily the functional data in the human lower uterine tract, supporting the notion that the  $\alpha_{1L}$ -adr exists as a distinct pharmacological entity. <sup>106</sup>

**4.2.3. Modifications in the side chain.** A series of WB 4101 55 related benzodioxans were synthesized by replacing the ethylene chain separating the amine and the phenoxy units of 55 with a cyclopentanol moiety, a feature of 6, 7-dihydro-5-[(cis-2-hydroxy-trans-3-phenoxycyclopentyl)amino|methyl-2- methyl-2-methylbenzo[b]thiophen-4-(5H)-one, 72, that was reported to display an intriguing selectivity profile at α<sub>1</sub>-adr. Replacement of 6,7-dihydro-2-methylbenzo[b]thiophen-4(5 $\hat{H}$ )-one unit of 72 with benzodioxan moiety of 57, led to the potent  $\alpha_1$ -adr antagonist, 73, which displayed a significant affinity toward the  $\alpha_{1D}$ -adr. The stereochemistry of cyclopentane unit had a greater influence on the affinity than that of the benzodioxan moiety. Interestingly enough, a 1-R configuration conferred higher affinity at  $\alpha_1$ -adr, whereas 1-S configuration produced higher affinity for 5-HT<sub>1A</sub> receptors, indicating that the two receptors systems have different stereochemical requirements. 107

A series of WB 4101 55 related benzodioxans, 74–81, has been synthesized by replacing the phenoxymethyl moiety of 55, with an N-alkylpiperazine bearing a cyclic substituent (a substituted or unsubstituted phenyl group, a pyridine or pyridazinone ring, or a furoyl moiety) at the second hydrogen atom. The binding profile of these compounds has been assessed by radioligand receptorbinding assays at  $\alpha_1$  and  $\alpha_2$ -adr, in comparison to prazosin and rauwolscine, respectively. It was observed that the 4-methoxyphenyl derivatives had lower  $\alpha_1$ -adr affinities than 55. The 2-fluorophenyl derivatives were even lesser active than their methoxy counterparts.  $^{108}$ 

Among various  $\alpha_1$ -adr antagonists, both prazosin and WB 4101 have shown good affinity for  $\alpha_1$ -adr and have a prominent role in characterization of the receptors. Many structure–activity relationships have been studied. It was therefore thought of interest by some workers to

synthesize and evaluate the combination structures of prazosin and the benzodioxane WB 4101, as the hybrid of their integral structural features, as in 82–86. All the compounds exhibited a marked selectivity toward  $\alpha_1$ -adr. Furthermore, their potency at  $\alpha_1$ -adr ranged within three orders of magnitude, whereas activity at  $\alpha_2$ -adr did not vary dramatically. It is concluded that structural changes markedly affecting the binding at  $\alpha_1$ -site do not affect  $\alpha_2$ -sites. All these molecules obtained as hybrids of 55 and prazosin are significantly weaker antagonists than the parent compounds. Although, this might indicate that 55 and prazosin bind at unrelated sites, the possibility that they recognize the identical site cannot be excluded since the decreased activity observed for hybrid compounds simply reflect their decrease in affinity for such a site.  $^{109}$ 

**4.2.4.** Modifications in the 2,6-dimethoxyphenoxyalkyl ring system. A number of *ortho*-disubstituted analogues of 2-[(2-phenoxyethyl)aminomethyl]-1,4-benzodioxan were designed and synthesized in both the enantiomeric forms and tested in binding assays on the same receptors. The affinity values of the new compounds, **87**, were compared with those of the enantiomers of WB 4101

and of the *ortho*-monosubstituted derivatives, suggesting some distinctive aspects of the interaction of the phenoxy moiety, in particular with the  $\alpha_{1A}$ -adr and the 5-HT $_{1A}$  receptors of the monosubstituted and the disubstituted compounds. <sup>110</sup>

R=R<sup>1</sup>=F, Cl, *t*-Bu, OCH<sub>3</sub>, CH<sub>3</sub>, C<sub>2</sub>H<sub>5</sub>, CH<sub>2</sub>CH<sub>2</sub>Cl, *i*-Pr etc

**4.2.5.** Replacement of 1,4-benzodioxan ring system with other fused ring systems. To evaluate a possible role of  $\pi$  electrons, the dehydrodioxan ring of 55 was replaced by a phenyl ring as in 88. Since, the indole system is present in the structure of some  $\alpha_1$ -adr antagonists as in Indoramin, <sup>111</sup> the combination of the indole moiety with 55 as in 89 was also studied. Further, the 1,4-benzodioxane ring of 55 was also replaced with tetrahydronaphthalene, as in 90. Low activity of all these compounds 88–90, indicates that the 1,4-benzodioxane ring system is an integral pharmacophore for the activity, and rings like naphthalene, indole, tetrahydronaphthalene may have unfit planarity with the  $\alpha_1$ -adrs. <sup>112</sup>

#### 4.3. Dihydropyridines and dihydropyrimidines

4.3.1. Derivatives from dihydropyridine nucleus. In contrast to the prazosin analogues, the 1,4-dihydropyridine, (S)-(+)-niguldipine 91 exhibits 340- to 630-fold selectivity in binding to the cloned human  $\alpha_{1A}$ -adr relative to the  $\alpha_{1B}$ -adr and  $\alpha_{1D}$ -adrs. <sup>113</sup> (R)-(-)-Niguldipine was 29-fold less potent at the  $\alpha_{1A}$ -adr than its enantiomer and also less subtype selective. The main agent appearing within the dihydropyridine class of compounds is SNAP 5089 **92**, which is closely related to niguldipine a known Ca<sup>2+</sup> channel blocker. Some of these compounds have been used to treat BPH and found to cause undesired side effects, such as dizziness and asthenia. These side effects may be due to cross-reaction of these compounds at  $\alpha_{1B}$  and  $\alpha_{1D}$ -adrs. Analogues of 91 were synthesized with the aim of achieving greater selectivity and affinity for the human  $\alpha_{1A}$ -adr and reducing Ca<sup>2+</sup> channel affinity. The affinity of 4-(nitrophenyl)-1,4-dihydropyridines for the L-type Ca<sup>2+</sup> channel is known to depend on the position of the nitro group. 4-Nitrosubstitution is detrimental for the Ca<sup>2+</sup> channel blocking activity as compared to 3-nitro and 2-nitro substitutions. Compound 93 (X = O) exhibited a 54-fold reduction in potency relative to 91 as an antagonist of the Ltype Ca<sup>2+</sup> channel. Notably, **92** maintained high affinity and subtype selectivity of 630-, 1500-, and 1500-fold in

binding to the  $\alpha_{1A}$ -adr relative to the  $\alpha_{1A}$ ,  $\alpha_{1B}$ -adrs, and the L-type Ca<sup>2+</sup> channel, respectively. This compound was also >1000-fold selective in binding to the human  $\alpha_{1A}$ -adr relative to the cloned human  $\alpha_{2A}$ ,  $\alpha_{2B}$ , and  $\alpha_{2C}$ -adrs. The enantiomers of **92** were separated by HPLC on a chiral column. The (–)-enantiomer proved to be more active at the  $\alpha_{1A}$ -adr, but less active at the L-type Ca<sup>2+</sup> channel than the (+)-enantiomer. 114

A new series of dihydropyridine derivatives, bearing oxypropanolamine moiety on phenyl ring at the 4-position of the dihydropyridine base, was prepared. These compounds were evaluated for inotropic, chronotropic, and aorta contractility that are associated with  $\text{Ca}^{2+}$  channel and adrenergic antagonist activities. Derivatives with oxypropanolamine side chain on their 4-phenyl ring associated  $\alpha/\beta$ -adr blocking activities created a new family of calcium entry and the third generation  $\beta$ -adr blockers. It was concluded that compounds **94**–**96** showed not only markedly high calcium-antagonistic activity, but also the highest antihypertensive effect. Compound **95** was selected for further pharmacological and pre-clinical evaluation studies. <sup>115</sup>

 $\begin{array}{l} \textbf{94}\!-\!R_1\!=\!t\text{-butyl}, \ R_2\!=\!OCH_3, \ R_3\!=\!H, \ R_4\!=\!CH_3 \\ \textbf{95}\!=\!R_1\!=\!\text{guaiacoxyethyl}, \ R_2\!=\!OCH_3, \ R_3\!=\!H, \ R_4\!=\!CH_3 \\ \textbf{96}\!=\!R_1\!=\!\text{guaiacoxyethyl}, \ R_2\!=\!H, \ R_3\!=\!CI, \ R_4\!=\!C_2H_5 \end{array}$ 

Some other dihydropyridinyldicarboxylate amides and esters, **97** as  $\alpha$ -adr blockers have been reported, but they showed poor oral bioavailability in rats (5%). <sup>116</sup>

**4.3.2. Derivatives from dihydropyrimidine nucleus.** In an effort to optimize the pharmacokinetic parameters by replacing the dihydropyridine moiety with a dihydropyrimidine template, a number of dihydropyrimidines **98** and **99** showed good binding affinity (>300-fold) and selectivity for  $\alpha_{1A}$ -adr over  $\alpha_{1B}$ ,  $\alpha_{1D}$ , and  $\alpha_{2}$ -adrs. Most of the compounds displayed negligible affinity for rat L-type Ca<sup>2+</sup> channel. A number of modifications on the dihydropyrimidine template, linker chain, and piperidine or piperazine side chains are well tolerated. Although, all these modifications yielded compounds with good binding affinity and selectivity for  $\alpha_{1A}$  receptors, their pharmacokinetic profile was found to be poor with low bioavailability and short plasma half-lifes. 117

$$H_3CO$$
 $H_3C$ 
 $N$ 
 $Z=propyl, ethyl, etc$ 
 $R$ 
 $Z=propyl, ethyl, etc$ 
 $R$ 
 $Z=propyl, ethyl, etc$ 
 $R$ 
 $Z=propyl, ethyl, etc$ 
 $R$ 
 $Z=propyl, ethyl, etc$ 
 $R$ 

**4.3.3. Derivatives from dihydropyrimidinones.** It is possible that the poor pharmacokinetic profile of **97** may be due to a rapid conversion of the dihydropyridine moiety into pyridine moiety by oxidative metabolism. Thus, it

was suggested that a dihydropyrimidinone in place of dihydropyrimidine nucleus would not undergo such oxidative metabolism and therefore, might exhibit a better pharmacokinetic profile. Thus, new compounds 100 and 101 were synthesized. These compounds showed good binding affinity and subtype selectivity for  $\alpha_{1A}\text{-adr}.$  On the basis of the lack of cardiovascular effects and the superior pharmacodynamic profiles of these  $\alpha_{1A}\text{-selective}$  compounds in the animal models, it was proposed that they could offer a significant improvement over the current treatments of BPH.  $^{118}$ 

Study of the metabolites of compound 101 revealed 102 and 103 as two major metabolites. Compound 102 was found to be devoid of  $\alpha_{1A}$ -antagonistic activity and showed negligible cross-reactivity at several other G-protein coupled receptors and the L-type Ca<sup>2+</sup> channel.

Metabolite 103, however, was found to be a  $\mu$ -opioid agonist and is a close analogue of the  $\mu$ -opioid agonist meperidine 104. Since this may lead to opioid liabilities on chronic administration of 101, modifications were sought. Thus, by modifying the linker to minimize the formation of 4-methoxycarbonyl-4-phenylpiperidine and replacement of the piperidine portion of 101 with other piperidines that do not have the  $\mu$ -opioid agonist activity were thought. Various approaches to modify

the linker chain resulted in several compounds with good  $\alpha_{1A}$ -binding affinity and selectivity, but they did not significantly affect the *N*-dealkylation and the formation of **102**. However, compounds (+) **105** and (+) **106** showed excellent selectivity over  $\alpha_{1B}$  and  $\alpha_{1D}$ -adrs along with good selectivity over several recombinant human G-protein coupled receptors. <sup>120</sup>

Working on similar goals, new derivatives of dihydropyrimidinones containing substituted 4-phenylpiperazines were synthesized. Judicious alterations based on the steric and electronic nature of the substituents on the phenyl ring of the 4-phenylpiperazines led to the identification of 2-carboxamidophenylpiperazine moiety as a preferred side chain subunit having much weaker binding affinity at the opioid receptors. Compound (+)-107 was identified as a lead compound with a binding and functional profile comparable to the standard.<sup>121</sup>

The  $\alpha_{1A}$ -adr antagonistic activity of a series of dihydropyrimidinones  $C_5$  amides **180** is analyzed through Fujita-Ban and Hansch approach. The role of different substituents on the activity of these analogues is explored and SAR developed. Both approaches predict

that more hydrophobic X-substituents and the phenyl or 2-cyanophenyl substituents at the 4-position of the piperidine ring are beneficial in raising the  $\alpha_{1A}$ -adr antagonistic activity of the compounds. Similarly, the presence of fluorine at  $R_4$  further helped in increasing the activity. Hydrogen and methyl substituents at  $R_1$  and  $R_3$  are more favorable for the activity. Similarly, hydrogen or methyl ester substituents at  $R_6$  position enhanced the activity.  $^{122}$ 

Replacement of the linker chain with more constrained 1,3-substituted cyclopentanes was done. This thinking was mainly influenced by the fact that, constraining a flexible section of an enzyme inhibitor or receptor antagonist, often results in enhanced binding affinity due to reduced entropic penalties on binding, when the constraint mimics the bioactive conformation. It was found that the potency of compounds 109 was similar to that of the open chain analogues. Also the receptor can tolerate various stereochemical orientations, as many different conformations were found to be active. The best configuration for the overall potency and  $\alpha_{1A}$ -adr subtype selectively is (R, R) stereochemistry in these compounds. 123

Some more replacements for the arylpiperazinyl group have also been worked out, affording compounds with better affinity and selectivity profile for  $\alpha_{1A}$ -adr subtype. A series of 3-(4-arylpiperazin-1-ylalkyl)uracil antagonists was prepared and tested for *in vitro* affinity. Two compounds **110** and **111** are found to possess high uroselectivity. <sup>124</sup>

#### 4.4. Fused pyrimidindiones

The prototype of this type of compounds expressed by the general structure, Figure 6, has been the quinazoline-2,4-dione derivative, SGB 1534 112 which has exhibited potent  $\alpha_1$ -adr activity. The above structure has been based on the reports on the various analogues of 112, synthesized and evaluated by number of workers till date. Various points of modifications in this general structure are shown in Figure 6.

The quinazoline-2,4-dione part has been replaced with a variety of heterocycles like thienopyrimidine-2,4-diones as in 113, which has exhibited effective  $\alpha_1$ -adr blocking properties. <sup>126</sup>

Figure 6. Points of modifications in pyrimidindiones.

A new series of selective and high-affinity  $\alpha_1$ -adr ligands, characterized by a 1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione system, was synthesized. Compounds, **114–116**, displayed affinity in the nanomolar range for  $\alpha_1$ -adr. These compounds showed their ability to address properly  $\alpha_1$ -adr selectivity, over 5-HT<sub>1A</sub>, D<sub>1</sub>, and D<sub>2</sub> dopaminergic receptors. In particular, compound **116**, endowed with affinity in the nanomolar range for the  $\alpha_1$ -adr, showed the best profile in terms of selectivity toward other tested receptors and in functional assays, a preference for the  $\alpha_{1D}$  with respect to  $\alpha_{1A}$  and  $\alpha_{1B}$ -adr of one order of magnitude. <sup>127</sup>

On similar lines a tricyclic 3-substitutedpyrimido[5,4-b]-indole-2,4-dione system has also been coupled by the means of an alkyl chain to the phenyl piperazine moiety to develop selective  $\alpha_1$ -adr ligands. In this series, compound 117 has emerged as the most interesting candidate showing high affinity and selectivity for  $\alpha_1$ -adr on rat cortical membranes over  $\alpha_2$ -adr,  $\beta_2$ -adr, and 5-HT<sub>1A</sub> receptors.

The most interesting feature of these molecules which seemed necessary for the receptor binding was the presence of a phenyl ring on N-4 atom of the piperazine moiety of the side chain. In all the above compounds, 112–119, presence of a o-methoxy substitution on the phenyl or benzoyl moiety attached to the 4th position of the piperazine increased the affinity to the  $\alpha_1$ -adr, 10 folds. On the other hand, p-substitution at these positions drastically reduced the activity. <sup>128</sup>

In the compounds of the series of the pyrimido[5,4-b]indole derivatives 117, the compounds 118 and 119, bearing 4-iso-propyl and 4-tert-butyl substituents, respectively, when tested in the binding assays on the three human cloned  $\alpha_1$ -adr ( $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$ ) subtypes, exhibited very good  $\alpha_{1D}$ -adr selectivity. 129

A number of new pyrimido[5,4-b]indole and benzothieno[3,2-d]pyrimidine derivatives were synthesized and evaluated for their binding and functional properties at  $\alpha_1$ -adr receptor subtypes. In binding assays on human cloned receptors, some new compounds such as **120** and **121** showed very high affinity and a slight preference for the  $\alpha_{1D}$ -adr subtype. In addition, functional tests in isolated rat tissues evidenced that new compounds act as potent  $\alpha_1$ -adr antagonists. <sup>130</sup>

Replacement of the aminocarbonyl (C=O) at position 4 of SGB 1534 **112** with a sulfonyl group (SO<sub>2</sub>) resulted in 2-[[4-(2-methoxyphenyl)piperazin-1-yl]ethyl]-1,2,4-benzothiadiazin-3(4*H*)-one 1,1-dioxide **122.** The compound exhibited very potent antihypertensive activity. <sup>131</sup>

There are also some reports on the examples in which modifications are affected by replacing the aryl piperazinyl moiety of the general structure of Figure 6 with heterocyclic ring systems, especially the tricyclic substituted-hexahydro[e]isoindole nucleus. Compound 123 is a good example of such series that has led to potential selective  $\alpha_1$ -adr antagonists that could be useful for the symptomatic treatment of benign prostatic hyperplasia (BHP).  $^{53,132}$ 

Further, modifications in this series involving replacement of tricyclic pyrazinothienopyrimidine-2,4-dione part with various azaquinazoline-2,4-diones, diazaquinazolin-2,4-diones, pyrrolopyrimidine-2,4-diones, and

various thienopyrimidine-2,4-diones gave a diverse series of compounds **124**. The dimethoxyquinazolin-2,4-dione has also been used to replace the tricyclic pyrazinothienopyrimidine-2,4-dione part as in **125**. Compound **125** was found to be the most potent, with highest degree of selectivity in the radioligand-binding assays (57-fold). The overall conclusion from the various modifications discussed above as compounds **123–125** is that, the selectivity is only manifested with the quinazolinediones of which the 6,7-dimethoxyquinazolinediones are the best. <sup>133</sup>

In a somewhat related type of compounds, very interesting novel derivatives of types 127 and 128 have been prepared in which, though the arylpiperazinylethylamino moiety is kept intact, the fused pyrimidine-2,4-dione moiety has been replaced with azaspirodecanediones and azaspiroundecanediones. The compounds act as selective  $\alpha_{\rm 1D}$ -adr antagonists with high affinity. However, their affinity toward serotonin 5-HT $_{\rm 1A}$  and dopamine  $D_2$  and  $D_3$  receptors is found to be slightly decreased. In the above com-

In an interesting study, which is based upon the molecular modeling simulations of the fitting values and conformational energy values of the best-fitted conformers to both  $\alpha_1$ -adr agonist and  $\alpha_1$ -adr antagonist hypotheses, a series of new imidazo[5,1-*b*]quinazoline derivatives 126 was synthesized. For the best  $\alpha_1$ -adr antagonist activity the phenyl ring attached to the piperazine ring must be unsubstituted. Substitutions like *o*-methoxy or *p*-fluoro at this phenyl ring increased the agonistic activity for  $\alpha_1$ -adr. Branching of the linker carbonyl group was also found to be detrimental for the  $\alpha_1$ -adr affinity. 134

126

pounds, compound 128 bearing a trifluoro substitution on the phenyl ring had high affinity for  $\alpha_{1D}$ -adr, but reduced affinity for 5-HT $_{1A}$  and  $D_2$  receptors. Further, in this compound, the placement of  $\beta$ -methyl group on the linker decreases the binding affinity.  $^{135-139}$ 

On similar lines, like the azaspirodecandiones, bicyclohydantoin moiety has also been tried and a series of compounds 129 with affinity for 5-HT<sub>1A</sub> and  $\alpha_1$ -adr receptors was synthesized and subjected to the

3D QSAR study to get the insight into the structural requirements that are responsible for 5-HT $_{1A}$  and  $\alpha_1$ -adr selectivity. It was concluded that the hydantoin moiety and the side chain length modulate not only the affinity, but also the selectivity for the receptors.  $^{140}$ 

#### 4.5. Pyridazinone derivatives

The literature search reveals pyridazinones as a class of compounds with a potential for selective  $\alpha_1$ -adr antagonist activity. The pyridazinone derivatives 130 and 131 have been reported as biologically active antihypertensives.  $^{141,142}$ 

Further, derivatives of the 3(2*H*)-pyridazinone nucleus have been synthesized showing a planar aromatic region and a chain with basic nitrogen. <sup>143</sup> Through further modifications on these moieties, the compounds, 4-[4-(phenoxyethyl)-1-piperazinyl-3(2*H*)-pyridazinones 132 and alkane-bridge dimers of 4-, 5- and 6-[4-(phenoxyethyl)-1-piperazinyl]-3(2*H*)-pyridazinones 133 were synthesized. While, they all exhibited good affinity toward  $\alpha_1$ -adr, few of them were found to have good selectivity. The dimers 134 and 135 are particularly interesting as there though slightly low in activity than the starting monomers, show high selectivity ratio for the receptors  $(\alpha_1/\alpha_2 > 100)$ , respectively. <sup>144</sup>

133

Barbaro et al., 145 in order to increase the selectivity of these compounds, developed a three dimensional model of the pharmacophoric features responsible for the  $\alpha_1$ -adr antagonistic activity. They demonstrated some very important features for the affinity and selectivity for the  $\alpha_1$ -adr with respect to  $\alpha_2$ -adr. They showed that the methoxy group at the o- position of the phenylpiperazine moiety led to the best  $\alpha_1$ -affinity and selectivity profile. Also the polymethylene chain linking the arylpiperazine moiety to the pyridazinone ring is a critical structural feature in determining the affinity and selectivity profile of the compounds. In fact, the alkyl moiety serves as a spacer to bring both the pyridazinone and the arylpiperazine moiety to the optimal distance to interact with a hydrogen bond donor and a hydrophobic pocket of the putative receptor, respectively. The gradual increase in affinity was obtained by lengthening the chain from two to seven-carbon atoms. On this basis, a new series of pyridazin-3(2H)-one derivatives was evaluated for its in vitro affinity toward both  $\alpha_1$  and  $\alpha_2$ -adr. Compound 136 showed a very high selective affinity for  $\alpha_1$ -adr, which was 274 times more than that for  $\alpha_2$ -adr.

The effect of a methoxy substitution at the *o*-position was studied and it was found that the bulkier alkoxy substitution at this position increased the affinity by 4-to 5-folds. The optimum activity was obtained in compound 137 bearing an *iso*-propoxy substitution. <sup>146</sup>

4,5-Disubstituted-6-phenylpyridazinones, having an arylpiperazinylalkyl side chain at position 2, carrying an ethylenic spacer between the protonated arylpiperazine and the pyridazinone **138** showed slight  $\alpha_{\rm 1D}/\alpha_{\rm 1A}$ , high  $\alpha_{\rm 1D}/\alpha_{\rm 1B}$ , and very high  $\alpha_{\rm 1A}/5\text{-HT}_{\rm 1A}$  and  $\alpha_{\rm 1D}/5\text{-HT}_{\rm 1A}$  selectivities.  $^{147}$ 

Using a rational design approach, a series of novel  $N_1$ -aryl- $N_2$ -alkyl (pyridazinonyl)piperazines, bearing a benzimidazolyl or imidazolyl substituent on the pyridazinone moiety, have been synthesized and evaluated for  $\alpha_1$ -adr affinity and blocking activities A 1.1 nM affinity toward  $\alpha_1$ -adr was found for compound 139, the most active of this series. <sup>148</sup>

139= R=1-benzimidazolyl or imidazolyl; R<sub>1</sub>=OCH<sub>3</sub>

The importance of the substituents on the pyridazinone ring was further studied by synthesizing a series of derivatives having arylpiperazinylalkyl chain at different positions of the ring. A novel series of 8-chloro-substitutedarylpiperazinylethylamino-6-methylpyrrolo[1,2-b: 3,4-d']dipyridazin-5(6H)-ones, 140, was synthesized and evaluated. Most of the synthesized compounds showed high potency on all the assays and some selectivity for  $\alpha_{1A}$  and  $\alpha_{1D}$ -adr subtypes.  $^{149}$ 

Same workers have employed new QSAR models for designing a series of compounds **141** characterized by N-phenylpiperazinylalkylamino moiety linked to the substituted pyridazinones. The newly synthesized compounds were evaluated for the binding affinities toward the  $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$ -adr cloned subtypes as well as the

5-HT<sub>1A</sub> receptors. This study indicated that substitutions in the positions 5 and/or 6 of the pyridazinone ring as well as in the positions 2' and 5' of the phenyl ring together with the length of the linker are responsible for modulating the ligand  $\alpha_1$ -adr-binding affinities and  $\alpha_{1A}$ -adr/5-HT<sub>1A</sub> selectivities.  $^{150}$ 

A novel series of piperazine derivatives of general structure 142 has been prepared. These compounds were evaluated for their  $\alpha_1$ -adr activity. In this class of compounds, the N-1 piperazine nitrogen has been directly linked to the 4-, 5-, or 6-positions of the pyridazinone ring and the N-4 nitrogen, by a suitable spacer (SP), to various  $\alpha_1$ -adr pharmacophore moieties (PM) such as 1,4-benzodioxanyl, 2-methoxyphenyl, or phenoxyethyl groups. Comparative molecular field analysis of these pyridazinone containing derivatives has been studied. To validate the predicted capability of the partial least squares (PLS) model, compound 143 was evaluated for biological activity whose the lowest energy conformer had a predicted  $pK_b$  of 6.56, which has slightly higher than the observed  $pK_b$  of 6.18.<sup>151</sup>

In order to increase the affinity and selectivity for  $\alpha_1$ -adr and its subtypes, new series of compounds containing benzimidazolylpyridazinone, an indolylpyridazinone, or imidazolylpyridazinone moieties were prepared by modifying the structure of trazodone 144. The SAR studies of these compounds, suggested that the presence of a methoxy group at the o-position of the phenylpiperazine moiety led to the best  $\alpha_1$ -adr affinity and selectivity profile. Lengthening

of the spacer chain to three- or four-carbon atoms afforded compounds with an increased affinity toward  $\alpha_1$ - and  $\alpha_2$ -adrs. Further, elongation of the spacer to five- and six-carbon atoms led to slight decrease in the activity. These experimental results suggested that the long alkyl spacer, mainly based on its conformational flexibility, could assume a size and shape that influences the affinity (and selectivity) of compounds to  $\alpha_1$  and  $\alpha_2$ -adrs. SAR considerations also led to the hypothesis that a heterocyclic terminal fragment bigger than an aromatic five-membered ring is required for best activity. In fact, compounds bearing a benzimidazole or an indole group are all characterized by higher affinity with respect to the corresponding imidazole derivatives, suggesting that the size of the terminal heterocyclic ring is able to affect the biological properties of such compounds. The number of nitrogen atoms on the heterocyclic ring is an additional element leading to a variation in affinity with indole derivatives. Compounds 145-147 were found to be the most active in this study. 152

#### 4.6. Imidazolines and fused imidazolines

147=R=1-indolyl, n=4, R1=OCH3

4.6.1. Imidazoline derivatives. Since a long time imidazoline derivatives have been considered as one of the major class of drugs interacting with  $\alpha$ -adr receptors. Compounds like clonidine 148 and naphazoline 149, which contain a 2-iminoimidazoline or an imidazoline ring, respectively, show  $\alpha_1$ - and  $\alpha_2$ -adr antagonist activities. 153 Furthermore, specifically phentolamine 150, which contains an imidazoline ring, is a well known α<sub>1</sub>-adr antagonist. 154 It has been shown that the 2-aminoimidazoline resembles guanidine, not only in its geometrical parameters, but also at the electronic levels and both can be considered as excellent isosteres of each other. In other words, 2-aminoimidazoline can be considered as the masked or restricted guanidine. 155 Based on these facts a series of derivatives containing the guanidine or the 2-aminoimidazoline groups were synthesized. The bis-imidazolinenaminophenyl 151 and bis-guanidinediphenyl 152 derivatives when synthesized and evaluated showed slight antagonistic activity for  $\alpha_1$ -adr. <sup>156</sup>

A report describes N-[3-(1H-imidazol-4-ylmethyl)-phenyl]ethanesulfonamide (ABT-866, **153**) as a novel  $\alpha_1$ -adr agent having the unique profile of  $\alpha_{1A}$ -adr (rabbit urethra, EC<sub>50</sub> = 0.60  $\mu$ M) agonism with  $\alpha_{1A}$  (rat spleen,  $pA_2$  = 5.4) and  $\alpha_{1D}$  (rat aorta,  $pA_2$  = 6.2) antagonism. An in vivo dog model showed **153** to be more selective for the urethra over the vasculature than A-61603 **154**, ST-1059 **155** (the active metabolite of midodrine), and phenylpropanolamine **156**. 157

157

Phenylpropanolamine 156

Further, compared to phenylephrine, ABT-866 also demonstrates intrinsic activity at the  $\alpha_{1A}$ -adr subtype present in the rabbit urethra (pD $_2$  = 6.22, with 80% of the phenylephrine response), reduced intrinsic activity at the  $\alpha_{1B}$ -adr subtype in the rat spleen (pD $_2$  = 6.16, with 11% of the phenylephrine response) and no intrinsic activity at the rat aorta  $\alpha_1$ -adr subtype. ABT-866 also demonstrated antagonism at the rat spleen  $\alpha_{1B}$ -adr. (pA $_2$  = 5.39  $\pm$  0.08, slope = 1.20  $\pm$  0.12) and the rat aorta  $\alpha_{1D}$ -adr (pA $_2$  = 6.18  $\pm$  0.09, slope = 0.96  $\pm$  0.13).  $^{158}$ 

The same group has performed the structure-activity studies on the  $\alpha_{1A}$ -adr selective agonist N-[5-(1H-imidazol-4-yl)-5,6,7,8-tetrahydro-1-naphthalenyl]methane sulfonamide 157 and its analogues. The compounds were evaluated for binding activity at the  $\alpha_{1A}$ ,  $\alpha_{1B}$ ,  $\alpha_{1D}$ ,  $\alpha_{2A}$ , and  $\alpha_{2B}$ -adr subtypes. Functional activities in tissues containing the  $\alpha_{1A}$  (rabbit urethra),  $\alpha_{1B}$ (rat spleen),  $\alpha_{1D}$ , (rat aorta), and  $\alpha_{2A}$  (rat prostatic vas deferens) were also evaluated. A dog in vivo model simultaneously measuring intraurethral pressure (IUP) and mean arterial pressure (MAP) was used to assess the uroselectivity of the compounds. Many of the compounds that were highly selective in vitro for the  $\alpha_{1A}$ -adr subtype, were also more uroselective in vivo for increasing IUP over MAP. Correlation of the α-adr-binding affinities (pKi) as well as functional agonist (D2) with MAP and IUP was generated. Of these, the best correlations were observed for functional  $\alpha_{1A}$ -adr activity (constriction of rabbit urethra) versus MAP  $((r^2)$  0.70) and IUP  $((r^2)$ 0.82). 159

**4.6.2. Fused imidazolines.** The conformationally restricted analogues of SGB 1534 **112** have been synthesized to check their selectivity for  $\alpha_{1A}$ -adr. The most important structural feature of these molecules that seems to be necessary is the presence of *o*-substitution on the phenyl ring at the *N*-4 position of the piperazine moiety of the side chain attached to the 2- or 3-positions of the 2,3-dihydroimidazo[1,2-c]quinazoline ring system. Compounds **158** and **159** are the most potent compounds of this series and show better affinity than those of prazosin and SGB 1534.  $^{160}$ 

Similarly, the replacement of the 4-carbonyl (C=O) at position 4 by the imidazoline as in the SGB 1534 derivative **160**, of which the S-form, (S)-(-)-**160**, is more active than the R-form as a selective  $\alpha_1$ -adr antagonist. It was found to be most potent in reducing mean arterial blood pressure. <sup>161</sup>

#### 4.7. N-Arylindoles

The phenylindole nucleus of sertindole 161, an atypical antipsychotic drug, has shown to be a promising template for the development of the centrally acting  $\alpha_1$ -adr antagonists. Replacement of the 5-chloro atom in sertindole with polar substituents such as carbamovl and aminomethyl groups afforded a new class of selective  $\alpha_1$ -adr antagonists. The replacement of the 5-chloro atom in sertindole with heteroaromatic substituents such as azoles, pyridines, and pyrimidines has yielded several highly selective  $\alpha_1$ adr antagonists. Tetrazoles were found to be the optimal heteroaromatics with respect to the overall selectivity. Considering selectivity for  $\alpha_{1A}$ -receptors with respect to the D<sub>2</sub>, D<sub>3</sub>, D<sub>4</sub>, and serotonin 5-HT<sub>2A</sub> and 5-HT<sub>2C</sub> receptors, the optimal activity was shown by the triazoles. Compound 161 has the affinities of 0.99, 3.2, and 9.0 nM for  $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$ -adr subtypes. <sup>162</sup>

Receptor-binding affinities for the  $\alpha_1$ -adr subtypes  $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$  for a series of 39  $\alpha_1$ -adr antagonists **163** derived from the antipsychotic sertindole are reported and the SAR of the compounds with respect to affinity for the  $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$ -adr subtypes, as well as, affinity obtained by an  $\alpha_1$ -adr assay (rat brain membranes)

was investigated using a 3D QSAR approach based on the GRID/GOLPE methodology. Good statistics ( $r^2 = 0.91$ –0.96;  $q^2 = 0.65$ –0.73) were obtained with the combination of the water (OH<sub>2</sub>) and methyl (C3) probes. The  $\alpha_{1A}$ -adr receptor seems to be more tolerant to large substituents in the area between the indole 5- and 6-positions compared to the  $\alpha_{1B}$  and  $\alpha_{1D}$ -adr receptor subtypes. There seems to be minor differences in the position of areas in the  $\alpha_{1B}$ -adr receptor compared to  $\alpha_{1A}$  and  $\alpha_{1D}$  receptors, where electrostatic interaction between the molecules and the receptor (OH<sub>2</sub> probe) contributes to increased affinity.  $^{163}$ 

#### 4.8. N-Aryl and N-heteroaryl piperazine derivatives

Synthesis and activity of **164** (RWJ-37796), an arylpiper-azine derivative, which binds with high affinity ( $K_i < 4 \text{ nM}$ ) to 5-HT<sub>1A</sub> and  $\alpha_{1A}$ -adr receptors, have been reported. Compound **164** has an octanol–water partition coefficient (log P) of 4.00 (experimentally determined), and is predicted to have fair blood–brain barrier penetration. It has high affinities ( $K_i < 4 \text{ nM}$ ) for D<sub>2</sub>, D<sub>3</sub>, 5-HT<sub>1A</sub>, and  $\alpha_1$ -adr receptors and weaker affinities for 5-HT<sub>2</sub> (165 nM), 5-HT<sub>1B</sub> (2880 nM), and  $\alpha_2$ -adr (17 nM) sites.  $\alpha_1$ -Adr binding has been broken into  $\alpha_{1A}$ -adr (0.20 nM) and  $\alpha_{1B}$ -adr (47 nM) components by competition experiments with the  $\alpha_{1A}$ -adr ligand, WB 4101.

Screening of a chemical library against  $\alpha_1$ -adr in a radioligand-binding assay has led to the discovery of a new series of compounds with the general structure of **165**. Further, modifications in the structure of these compounds was done with an aim to improve their affinity and selectivity, keeping in mind that the 1-(2-alkoxyaryl)piperazine moiety was necessary for its potency and selectivity. In this series, almost no selectivity was

seen between  $\alpha_{1A}$  and  $\alpha_{1D}$ -adr, though selectivity between the subtypes  $\alpha_{1A}$  and  $\alpha_{1B}$ -adr was good (>125-fold). However, by changing the substitution pattern from 2,5-disubstituted to 2,4-disubstituted thiophene, the affinity was retained and selectivity was enhanced. Compounds **166–168** are highly potent against  $\alpha_{1A}$ -adr and very selective for them than other subtypes. <sup>165</sup>

A new series, in which the thiophene ring was replaced by other five-membered heterocyclic ring systems like isoxazole as in compound 169, oxazole as in compound 170, and thiazole as in 171, was synthesized and evaluated for  $\alpha_1$ -adr subtypes binding affinities. Binding affinities of these derivatives clearly indicate that these heterocyclic ring systems were not well tolerated for the potency, as well as selectivity for the  $\alpha_{1A}$ -adr subtypes.  $^{166}$ 

Dihydrotestosterone has been established as a dominant factor of prostatic growth. Research on inhibitors of steroid  $5\alpha$ -reductase  $(5\alpha$ -R), an enzyme which converts testosterone to the more potent dihydrotestosterone, has been carried out. It is known that finasteride 172, a 5 α-R inhibitor, is approved for BPH treatment. 167, 168 Some dual acting compounds with  $\alpha_1$ -adr antagonistic action and steroidal 5- $\alpha$  reductase (5 $\alpha$ -R) inhibitory activity were developed. From the earlier study, <sup>169</sup> compound 173 shows  $\alpha_1$ -adr receptor antagonistic activity, which seems to be very close to ONO3805 174 that has been reported as a non-steroidal 5α-R inhibitor. The methoxy group of 173 was replaced with the 4-carboxypropyl group of 174 to yield a new series of compounds 175. The biological evaluation results of these compounds show that lengthening of the spacer chain increased the  $5\alpha$ -R inhibitory activity, whereas no difference was observed for the  $\alpha_1$ -adr antagonistic activity. The introduction of a phenyl group markedly increased both  $\alpha_1$  and  $5\alpha$ -R inhibitory activities. As the alkyl substituent at this position becomes larger the  $\alpha_1$ -antagonistic activity decreases, while  $5\alpha$ -R inhibitory activity increases.  $^{170}$ 

In order to gain insight into the structural principles governing subtype selectivity, 3D QSAR studies have been performed on a set of arylpiperazines, 176, for the  $\alpha_{1A}$ -adr receptor antagonistic activity by using a logico-structural-based approach for the pharmacophore mapping. The resulting models exhibited good  $r^2$  (0.80) values. 171

Development of REC 15/2739 177 as potential  $\alpha_1$ -adr antagonist opened up another new avenue. Hybridization of 177 with the first generation lead RWJ

37914 **178** then led to the discovery of second generation leads in which the (o-isopropoxyphenyl)piperazine moiety was fixed. Hydroxy group was also introduced to modify the pharmacokinetic properties of the molecules. From these compounds, **177** and **178**, compound **179** was found, which exhibited improved binding affinity (11-fold) and maintained good selectivity at the  $\alpha_{1A}$ -adr than the first generation lead. To improve the selectivity and binding affinity for  $\alpha_{1A}$ -adr, the hydroxyl enantiomers of **179** were explored along with substitution on phenoxy ring. The S-hydroxy derivative **180** displayed higher selectivity in inhibiting rat prostrate contraction than rat aorta contraction and also exhibited a modest improvement of uroselectivity.

Further, modifications in REC 15/2739 176 with nitrooxy and furoxan NO-donor moieties yielded new NOdonor  $\alpha_1$ -antagonists 181. All these compounds were found to be potent and selective ligands for human cloned  $\alpha_1$ -antagonists subtype. <sup>175</sup>

A new class of piperazine derivatives (182–184) was designed, synthesized, and biologically tested for the  $\alpha_1$ -adr antagonistic activity. The new compounds are characterized by a flavone system linked through an ethoxy or propoxy spacer to a phenyl- or pyridazinone-piperazine moiety. Biological data showed an interesting profile for the phenylpiperazine subclass which was found to have a nanomolar affinity toward  $\alpha_1$ -adr and less pronounced affinity for  $\alpha_2$ -adr and the 5-HT<sub>1A</sub> serotoninergic receptors.  $^{176}$ 

n pattern=

A new series of phenylpiperazines were designed and synthesized based on the pharmacophore for uro-selective  $\alpha_1$ -adr antagonists and 3D chemical database searching. These compounds were evaluated for their  $\alpha_1$ -adr antagonistic activities and the result showed that three compounds, **185–187**, displayed high  $\alpha_1$ -adr antagonistic p $A_2$  of 8.56, 8.56 and 9.12, respectively. All three compounds have similar or better  $\alpha_1$ -adr antagonistic activities comparable with those of prazosin. 177

Isapirone 188, an anti-anxiety agent, has been shown to have modest affinity for  $\alpha_1$ -receptors. In order to increase its affinity for the  $\alpha_1$ -adrs, its piperazine subunit was replaced with a variety of piperidines. Thus, replacing the N-(2-pyrimidinyl)piperazine present in spirone with a 4-carboxymethyl-4-phenylpiperidine moiety led to a modest improvement in the  $\alpha_{1A}$ -binding affinity and enhanced the  $\alpha_{1A}$ -receptor subtype selectivity. Relocation of the carboxyalkyl group to the 3-position caused a variety of stereochemically dependent results. The ( $\pm$ )-cis 3-carbethoxy-4-phenylpiperidine derivative 189 was substantially more potent and more selective than its corresponding trans isomer. Upon separation, the (-)-cis isomer proved to be more active and selective than the (+)-cis isomer. 178

Considering NAN 190 **190**, <sup>179</sup> a known 5-HT<sub>1A</sub> and  $\alpha_1$ -adr ligand, as a template, a new series of selective  $\alpha_1$ -adr antagonists has been developed. Replacing the phthalimide group with a 1,2-benzisothiazol-3(2*H*)-one-1,1-

dioxide (saccharin) ring system afforded better selectivity against  $\alpha_{1B}\text{-}adr.$  Further, when the benzoxazolone ring was substituted with fluorine at the 6-position, it led to an increase in potency and similar selectivity for  $\alpha_{1A}\text{-}adr$  over  $\alpha_{1B}\text{-}adr$  and  $\alpha_{1D}\text{-}adr.$  Substitutions at 5 and 6-position of the saccharin ring were found to afford potent  $\alpha_{1A}\text{-}adr$  antagonists. Compound 191 represents a class of novel  $\alpha_{1A}\text{-}adr$  antagonists with high affinity and selectivity.  $^{180}$ 

Elworthy et al. 181 added to the SAR for arylpiperazinyl derivatives as  $\alpha_1$ -antagonists. They developed compounds 192 and showed that greater the size of a single ortho moiety, greater the affinity and selectivity is achieved. However, the optimum substituents are lower alkyl, alkylalkoxy or heterocyclics. Presence of electron withdrawing groups, regardless of size, led to loss of affinity. The aryloxy analogues afforded compounds with lower affinity, but the subtype selectivity was retained. ortho-Substitution of the (aryloxy)ethylamine led to the desired antagonistic properties as also realized in the arylpiperazine series. Substitution of the amide group with methyl groups increased affinity and improved the subtype selectivity. The dimethyl substitution was found to be optimal for affinity and selectivity.

#### 4.9. Miscellaneous compounds

A novel series of 1-indanone  $\alpha_1$ -adr antagonists was designed and synthesized based on a 3D-pharmacophore model. Their in vitro  $\alpha_1$ -adr antagonist activity assay showed that three compounds 193–195 had similar or improved  $\alpha_1$ -adr antagonistic activities relative to the positive control prazosin. Based on these results, a 3D QSAR study was performed using a self-organizing molecular field analysis (SOMFA) method to provide insight for the future development of  $\alpha_1$ -adr antagonists. <sup>182</sup>

It has been reported that certain aminothiopheneamines act as  $\alpha_1$ -adr receptor antagonists. This fact led to the discovery of a compound 196 and its stereoisomers. It was found that it has a unique mechanism of action that combines DA<sub>1</sub> receptor agonistic activity with vasodilation produced by selective  $\alpha_1$ -adr receptor blocked. 183

An oxazolidinone derivative, SNAP 7915 **197**, showed sub nanomolar (0.17 nM) binding affinity for the recombinant human  $\alpha_{1A}$ -adr and greater than 700-fold selectivity over  $\alpha_{1A}$ - and  $\alpha_{1D}$ -adr in competitive-binding assays. Compound **197** did not show significant affinity for the rat L-type Ca<sup>2+</sup> channel and a number of G-protein coupled receptors such as  $\alpha_2$ -adrenergic, histamine, and serotonin receptors. It exhibited significantly improved oral bioavailability and plasma half-life compared to dihydropyrimidinone analogues. <sup>184</sup>

A novel thiazole derivative (R)-(1)-2-amino-4-(4-fluorophenyl)-5-[1-[4-(4-fluorophenyl)-4- oxobutyl]pyrrolidin-3-yl]thiazole **198** (NRA 0045) was found to possess high affinities for the human cloned dopamine D<sub>4.2</sub>, D<sub>4.4</sub>, and D<sub>4.7</sub> receptors, with  $K_i$  values of 2.54, 0.55, and 0.54 nM, respectively. NRA 0045 is approximately 91-fold more potent at the dopamine D<sub>4.2</sub> receptor, compared with human cloned dopamine D<sub>2L</sub> receptor. NRA 0045 also has high affinities for the serotonin (5-HT<sub>2A</sub>) receptor ( $K_i$  = 1.92 nM) and  $\alpha_1$ -adr ( $K_i$  = 1.4 nM).

A quantitative structure–activity relationship (QSAR) study  $^{186}$  of a wide series of structurally diverse  $\alpha_1$ -adr antagonists was performed using the CODESSA (comprehensive descriptors for structural and statistical analysis) technique. Size and shape descriptors were considered in the attempt of using information relevant to  $\alpha_1$  receptors subtype interactions. In the series of antagonists considered in this study, subtypes of analogues identified were the constituents of extensively investigated classes of ligands, such as quinazolines, N-arylpiperazines, imidazolines, phenylalkylamines, benzodioxanes, and indoles, 1,4-dihydropyridines, the ligands chosen were superimposed, by a rigid fit procedure, minimizing the rms deviations with respect to three dummy atom pairs. The volumes of the resulting supermolecules were computed and redundant constituents were successively eliminated for each α-adr subtype ligand class. The overall three-dimensional shape of the supermolecules with respect to each receptor subtype  $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$  was obtained.

Thus, to model the pharmacological  $\alpha_1$ -adr subtype binding affinities, compounds 1, 20, 55 91, 200, 201, and 205 were used for the  $\alpha_{1A}$  supermolecule, whereas compounds 24, 199, and 204 were used for the  $\alpha_{1B}$  supermolecule. For the  $\alpha_{1D}$  supermolecule, compounds 1, 199, 202, 203, and 204 were selected. Very good predictions were obtained for the  $\alpha_1$ -adr subtypes, pertaining to the structural requirements of the ligands for the binding affinity, functional activity and in vitro and in vivo selectivities at various  $\alpha_1$ -adr subtypes.

A new three-dimensional computational approach for lead evolution, based on multiple pharmacophore hypotheses is described.<sup>187</sup> The ensemble hypothesis has been used to search virtual chemical libraries to identify compounds for the synthesis. This model is very

rapid, allowing very large virtual libraries of the order of a million compounds to be filtered efficiently. By applying this method to  $\alpha_1$ -adr ligands, it has been demonstrated that lead evolution from heterocyclic  $\alpha_1$ -adr ligands to highly dissimilar active N-substituted glycine compounds is possible.

Thus, from the known heterocyclic  $\alpha$ 1-adr ligands prazosin 1, compound 55, clozapine 206 and haloperidol 207, novel *N*-substituted glycine ligands have been proposed from the library as structures 208–210.

55 (Ki=0.54 nM)

H<sub>2</sub>CC

Clozapine 206 (Ki= 1.4 nM)

# 5. Pharmacological evaluation of selective α<sub>1</sub>-adrenoceptor subtypes antagonist activity

There are a few reports available in the literature for the evaluation of test compounds (ligands) for the selective antagonist activity against specific adr subtypes. Evaluation of selective  $\alpha_{1A}$ -adr antagonists activity is done using prostatic vas deferens of rat. 188 Another report describes rat hippocampal membranes pretreated with CEC as the model. 189 Phenylepherine treated splited spleen of Sprague-Dawley rats has been used as the model for the evaluation of  $\alpha_{1B}$ -adr antagonist activity. 190 The same report describes the use of thoracic aorta of rats for evaluation of  $\alpha_{1D}$ -adr antagonist activity. Recombinant mice lacking  $\alpha_{1D}$ -adr have also been used as a model along with normal mice to evaluate  $\alpha_{1D}$ -adr antagonist activity. Oshita et al., 192 have evaluated the  $\alpha_{11}$ -adr antagonist activity using NE-induced contraction of rabbit agrta pretreated with CEC as the model.

#### 6. Summary and conclusion

A brief introduction of hypertension, its causes, risks, and drugs currently used for its treatment and control is given. The role of  $\alpha_1$ -adr, their subtypes, their physiological roles and distribution are discussed. The subtypes of  $\alpha_1$ -adrs, namely,  $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$  in particular have been discussed with respect to their characteristics, structures, distribution, and significance. With a preliminary discussion on selective  $\alpha_1$ -adr antagonists pertaining to their chemistry, uses, and application in hypertension, safety, merits, and demerits, the main focus has been laid on the advances in the past one decade in the field of drug design and discovery involving the synthesis and evaluation of novel  $\alpha_1$ -adr antagonists, particularly selective toward  $\alpha_1$ -adr subtypes.

Existence of multiple  $\alpha_1$ -adr subtypes holds great promise for the discovery and development of more specific selective drug molecules, targeting only one  $\alpha_1$ -adr subtype and free from side effects. Thus, today medicinal chemists worldwide are involved in design and synthesis of very specific  $\alpha_1$ -adr subtype antagonists. A review of the literature on the research done on the discovery and evaluation of a variety of chemically diverse structures as selective antagonists of  $\alpha_1$ -adr and  $\alpha_1$ -adr subtypes in recent years, has been presented.

The various molecules designed, synthesized, and evaluated so far have been broadly classified into nine different categories: 2,4-diamino-6,7-dimethoxyquinazolines, 1, 4-benzodioxans, dihydropyridines and dihydropyrimidines, fused pyrimidindiones, pyridazinones, imidazolines, *N*-arylindoles, *N*-aryl and *N*-heteroaryl piperazines, and miscellaneous compounds.

The collection of  $\alpha_1$ -adr antagonists presented in this review covers a range of structural types, of which all the compounds possess a central basic center flanked on at least one side by aromatic systems. The presence of a protonated form of the molecule, at physiological pH appears to be a vital feature for  $\alpha_1$ -adr antagonists. However, the precise profile in terms of subtype selectivity is heavily dependent on the nature of the basic center, the substitution of the aromatic rings, and the spatial orientation of the groups. This overview separates the agents into structural classes defined by the basic center and discusses briefly how  $\alpha_1$ -adr subtype selectivity varies within each series.

With synthetic tools of drug design and evaluation (e.g., radio ligand assays), it is expected that medicinal chemists will soon be able to discover very specific and selective antagonists for  $\alpha_{1A}$ ,  $\alpha_{1B}$ , and  $\alpha_{1D}$ -adr subtypes, which shall be very specific in action and have relatively negligible side effects.

#### Acknowledgments

The authors gratefully acknowledge the help and encouragement received from Prof. M.N. Navale, Founder President, Sinhgad Technical Education Society, Pune 411041 and Indian Council of Medical Research, New Delhi for providing Senior Research Fellowship to Jitender B. Bariwal and Muthu K. Kathiravan.

#### References and notes

- www.gffi-fitness.org/Art\_15.htm. (This home page belongs to the GFFI Fitness Academy which is the first recognized academy for certification and continuing education in India. GFFI provides courses such as Personal Trainer/Gym Instructor, Yoga Teacher, Pilates Instructor, Aerobic/Group Instructor, Senior Fitness Coach, Sports Nutrition, Advance Fitness Trainer, etc).
- Oates, A. J.; Brown, N. J. In Goodman's The Pharmacological basis of Therapeutics; Hardman, J. D., Limbird, L. E., Eds., 10th ed.; McGraw Hill Medical Publishing Division: New York, 2001; pp 871–900.

- 3. Kannel, W. B. J. Cardiovasc. Pharmacol. 1989, 13, S4.
- 4. Guyton, A. C. Science 1979, 252, 1813.
- Lechat, P. In *Principles of Pharmacology Basic Concepts & Clinical Application*; Paul, L. M., Ed.; Chapman & Hall publication: London, 1995; pp 529–535.
- 6. Online anatomy and physiology@pgcc.edu (This home page belongs to Prince George's community college, Largo, Maryland, USA and under its continuing online education programme, it provides various scientific and community related topics).
- 7. Wakadkar, S. M. Pharm Dissertation, Bharati Vidapeeth Deemed University, India, 2006.
- Alderman, M. H.; Madhovan, S.; Ooi, W. L.; Cohen, H.; Sealey, J. E.; Laragh, J. H. N. Engl. J. Med. Chem. 1991, 324, 1098.
- 9. Guidelines Subcommittee of the WHO/ISH Mild Hypertension Liasion Committee, *Hypertension*, **1993**, *22*, 392.
- http://www.ti.ubc.ca/pages/letter8.html. The Therapeutics Initiative is an independent organization at the university of British Columbia, Canada dedicated to providing update evidence based practical information on drug therapy.
- Wilffert, B.; Davidesko, D.; Tinnermans, P. B. M. W. M.; Zwieten, P. A. V. *J. Pharmacol. Exp. Ther.* **1982**, 223, 219.
- 12. Langer, S. Z.; Shepperson, N. B.; Massingham, R. Clin. Sci. 1980, 59, 225s.
- Constantine, D.; Gunnel, D.; Weeks, R. A. Eur. J. Pharmacol. 1980, 66, 281.
- Woodman, O. L.; Vatner, S. F. J. Pharmacol. Exp. Ther. 1986, 237, 86.
- Timmermans, P. B. M. W. M.; Thoolen, M. J. M. C.; Mathy, M. J.; Wilffert, B.; Jonge, A.; Zwieten, P. A. Eur. J. Pharmacol. 1983, 96, 187.
- Kalkman, H. O.; Thoolen, M. J. M. C.; Timmermans, P. B. M. W. M.; Zwieten, P. A. J. Pharm. Pharmacol. 1984, 36, 265.
- 17. McGrath, J. C. Biochem. Pharmacol. 1982, 31, 467.
- 18. McGrath, J. C.; Flavahan, N. A.; McKean, C. E. J. Cardiovasc. Pharmacol. 1982, 4, 101.
- 19. Hamilton, C. A.; Reid, J. L. Cariovasc. Res. 1982, 16,
- Zandberg, P.; Timmermans, P. B. M. W. M.; Zwieten, P. A. J. Cardiovasc. Pharmacol. 1984, 6, 256.
- 21. Elsner, D.; Steward, D. J.; Sommer, O.; Holtz, J.; Bassenge, E. *Hypertension (Dallas)* **1986**, *8*, 1003.
- Holtz, J.; Saeed, M.; Sommer, O.; Bassenge, E. Eur. J. Pharmacol. 1982, 82, 199.
- 23. Gerold, M.; Haeusler, G. Naunyn-Schmiedeberg's Arch. Pharmacol. 1983, 322, 29.
- 24. Richer, C.; Lefevre-Borg, F.; Lechaire, J.; Gomeni, C.; Gomeni, R.; Giudicelli, J. F.; Cavero, I. *J. Pharmacol. Exp. Ther.* **1987**, *240*, 944.
- Shepperson, N. B.; Duval, N.; Langer, S. Z. Eur. J. Pharmacol. 1982, 81, 627.
- Drew, G. M.; Whiting, S. B. Br. J. Pharmacol. 1979, 67, 207
- Wolff, P. W.; Gesek, F. A.; Strandhoy, J. W. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1985, 44, 7692.
- Waldron, C. J.; Hicks, P. E. Auton. Pharmacol. 1985, 5, 333
- Horn, P. T.; Kohl, J. D.; Listinsky, J. J.; Goldberg, L. I. Naunyn-Schmiedeberg's Arch. Pharmacol. 1982, 318, 166.
- Hesse, I. F. A.; Johns, E. J. J. Auton. Pharmacol. 1984, 4, 145
- 31. Leeuw, P. W.; Es, P. N.; Vermey, P.; Birkenhager, W. H. *Hypertension (Dallas)* **1986**, *8*, 836.
- 32. Shebushki, R. J.; Fujita, T.; Ruffolo, R. R. *J. Pharmacol. Exp. Ther.* **1986**, *238*, 217.

- Hyman, A. L.; Kadpwitz, P. J. Am. J. Physiol. 1985, 249, H891.
- Gardiner, J. C.; Peters, C. J. Eur. J. Pharmacol. 1982, 84, 189.
- 35. Madjar, H.; Docherty, J. R.; Starke, K. J. Cardiovasc. Pharmacol. 1980, 2, 619.
- Kobinger, W.; Pichler, L. Eur. J. Pharmacol. 1981, 76, 101.
- Jie, K.; Brummelen, P.; Vermey, P.; Timmermans, P. B. M. W. M.; Zwieten, P. A. J. Cardiovasc. Pharmacol. 1986, 8, 190.
- 38. Reid, J. L.; Vincent, J. Cardiology 1986, 73, 164.
- Reper, C.; Mephesay, G. A.; Iakovidil, D. Eur. J. Pharmacol. 1978, 52, 24.
- Hibert, M. F.; Gittos, M. W.; Middlemiss, D. N.; Mir, A. K.; Fozard, J. R. J. Med. Chem. 1988, 31, 1087.
- Ibarra, M.; Pardo, J. P.; Lopez-Guerrero, J. J.; Rafael, V.-M. Br. J. Pharmacol. 2000, 129, 653.
- 42. Michelotti, G. A.; Price, D. T.; Schwinn, D. A. *Pharma-col. Ther.* **2000**, *88*, 281.
- 43. Hall, R. V. Semin. Cell Div. Biol. 2004, 15, 281.
- 44. http://www.mongabay.com/health/medications/Prazosin.html. This page contains recent news articles, when available and an overview of prazosin but does not offer medical advice. www.mongabay.com is a personal unfunded website of Mr. Rhett A. Butler.
- 45. Wolf, M. E. In *Burger's Medicinal Chemistry & Drug Discovery*, 10th ed.; Abraham, D. J., Ed.; A Wiley-Interscience Publication: New Jersey, 1996; Vol. 2, pp 296–297.
- The Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. *Hypertension*. 2003, 42, 1206.
- 47. Kirby, R. S. In *Textbook of Benign Prostatic Hyperplasia*; An ISIS Medical Media Publication: Oxford, New York, 1996; p 291.
- 48. Kenny, B.; Ballard, S.; Blagg, J.; Fox, D. J. Med. Chem. 1997, 40, 1293.
- Leonardi, A.; Testa, R.; Motta, G.; De Benedetti, P. G.; Hieble, P.; Giardina, D. In α<sub>1</sub>-Adrenoceptors. Subtypeand Organ-Selectivity of Different Agents. Perspective in Receptor Research; Giardina, D., Piergentili, A., Pigini, M., Eds.; Elsevier: Amsterdam, 1996; pp 135–152.
- Ruffolo, R. R., Jr.; Bondinell, W.; Hiebel, J. P. J. Med. Chem. 1995, 38, 3681.
- 51. Matyus, P.; Horvath, K. Med. Res. Rev. 1997, 17, 523.
- Cooper, K. L.; McKiernan, J. M.; Kaplan, S. A. *Drugs* 1999, 57, 9.
- Meyer, M. D.; Altenbach, R. J.; Basha, F. T.; Caroll, W. A.; Condon, S.; Elmore, S. W.; Kerwin, J. F., Jr.; Sippy, K. B.; Tietje, K.; Wiendt, M. D.; Hancock, A. A.; Brune, M. E.; Buchner, S. A.; Drizin, I. J. Med. Chem. 2000, 43, 1586.
- 54. Daly, C. J.; McGrath, I. Hypertension 2005, 45, e20.
- Villalobos-Molina, R.; Ibarra, M. Arch. Med. Res. 1999, 30, 347.
- Andersson, K. E.; Chapple, C. R.; Hofner, K. J. Urol. 2002, 19, 436.
- Pieter, B.; Timmermans, M. W. M.; Chiu, A. T.; Thoolen, M. J. M. C.. In *Comprehensive Medicinal Chemistry*; Hansch, C., Ed.; Pergamon Press: Oxford, 2005; Vol. 3, pp 141–145.
- Kynel, J. J.; Hollinger, R. E.; Oheim, K. W.; Winn, M. Pharmacologist 1980, 22, 272.
- Timmermans, P. B. M. W. M.; Kwa, H. Y.; Ali, F. K.; Van Zwieten, P. A. Arch. Int. Pharmacodyn. Ther. 1980, 245, 218.
- 60. Bond, R. F.; Johnson, G., 3rd. Circ. Shock 1984, 12(1), 9.

- Kawasaki, T.; Uezono, I.; Abe, I.; Nakamura, M.; Ueno, N.; Kawazoe, N.; Amae, T. Eur. J. Clin. Pharmacol. 1981, 20, 399.
- 62. Cavero, I.; Lefevre-Borg, F.; Manoury, P. H. Br. J. Pharmacol. 1984, 81, 13P.
- 63. Timmermans, P. B. M. W. M.; Zwieten, P. A.. In *Handbook of Hypertension*; Zwieten, P. A., Ed.; Elsevier: Amsterdam, 1984; Vol. 3, pp 239–245.
- 64. Campbell, S. F.; Hardstone, J. D.; Palmer, M. J. *J. Med. Chem.* **1988**, *31*, 1031.
- Bordner, J.; Campbell, S. F.; Palmer, M. J.; Tute, M. S. J. Med. Chem. 1998, 31, 1036.
- Melchiorre, C.; Angeli, P.; Bolognesi, M. L.; Chiarini, A.; Giardina, D.; Gulini, U.; Leonardi, A.; Marucci, G.; Minarini, A.; Pigini, M.; Quaglia, W.; Rosini, M.; Tumiatti, V. *Pharm. Acta Helv.* 2000, 74, 181.
- Rosini, M.; Antonello, A.; Cavalli, A.; Bolognesi, M. L.; Minarini, A.; Marucci, G.; Pogessi, E.; Leonardi, A.; Melchiorre, C. J. Med. Chem. 2003, 46, 4895.
- Bremner, J. B.; Coban, B.; Griffith, R.; Groenewoud, K. M.; Yates, B. F. Bioorg. Med. Chem. 2000, 8, 201.
- Chhabria, M. T.; Srinivas, S.; Rajan, K. S.; Ravikumar, T.; Rathnam, S. Arzneim.-Forsh./Drug Res. 2002, 52, 792.
- Valerie, A. A.; Simon, F. C.; John, C. D.; Colin, W. G.;
   Rhona, M. P. J. Med. Chem. 1987, 30, 999.
- 71. Campbell, S. F.; Danilewicz, J. C.; Greengrass, C. W.; Plews, R. M. *J. Med. Chem.* **1988**, *31*, 516.
- 72. Danilewicz, J. C.; Kenp, J. C.; Write, J. R. U.K. Patent 1,383,409, 1972; *Chem. Abstr.* **1974**, *81*, 13549h.
- Giardina, D.; Brasilli, L.; Gregori, M.; Massi, M.; Picchio, M. T.; Quaglia, W.; Melchiorre, C. J. Med. Chem. 1989, 32, 50.
- Giardini, D.; Gulini, U.; Massi, M.; Piloni, M. G.; Pompei, P.; Rafaiani, G.; Michiorre, C. *J. Med. Chem.* 1993, 36, 690.
- Sagratini, G.; Angeli, P.; Buccioni, M.; Gulini, U.; Marucci, G.; Melchiorre, C.; Leonardi, A.; Poggesic, E.; Giardina, D. *Bioorg. Med. Chem.* 2007, 15, 2334.
- Patane, M. A.; Scott, A. L.; Broten, T. P.; Chang, R. S. L.; Ransom, R. W.; Di Salvo, J.; Forray, C.; Bock, M. G. J. Med. Chem. 1998, 41, 1205.
- 77. Campbell, S. F. Drug Des. Delivery 1986, 1, 83.
- Campbell, S. F.; Davey, M. J. J.; Hardstone, D.; Lewis, B. N.; Palmer, M. J. J. Med. Chem. 1987, 30, 49.
- Manoury, P. M.; Binet, J. L.; Dumas, A. P.; Lefevre-Borg, F.; Cavero, I. J. Med. Chem. 1986, 29, 19.
- Giardina, D.; Crucianelli, M.; Romanelli, R.; Leonardi, A.; Poggesi, E.; Melchiorre, C. J. Med. Chem. 1996, 39, 4602
- 81. Bolognesi, M. L.; Melchiorre, C.; Budries, R.; Chiarini, A.; Poggesi, E.; Leonardi, A. J. Med. Chem. 1998, 41, 4844.
- 82. Giardiana, D.; Crucianelli, M.; Gulini, U.; Marucci, G.; Melchiorre, C.; Spampinato, S. *Eur. J. Med. Chem.* **1997**, 32, 9.
- 83. Minarini, A.; Budriesi, R.; Chiarini, A.; Leonardi, A.; Melchiorre, C. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 1353.
- Bolognesi, M. L.; Marucci, G.; Angeli, P.; Buccioni, M.; Melchiorre, C.; Minarini, A.; Rosini, M.; Tumiatti, V.; Melchiorre, C. J. Med. Chem. 2001, 44, 362.
- 85. Campbell, S. F.; Plews, R. M. J. Med. Chem. 1987, 30, 1794.
- Pitha, J.; Szabo, L.; Szurmai, Z.; Buchowiecki, W.; Kusiak, J. W. J. Med. Chem. 1989, 32, 96.
- 87. Di Stilo, A.; Fruttero, R. R.; Boschi, D.; Gasco, A. M.; Sarba, G.; Gasco, A.; Orsetti, M. Med. Chem. Res. 1993, 3, 554.
- 88. Fruttero, R.; Boschi, D.; Stilo, D. A.; Gasco, A. *J. Med. Chem.* **1995**, *38*, 4944.

- 89. Melchiorre, C. Trends Pharmacol, Sci. 1981, 9, 209.
- Sorba, G.; Stilo, A. D.; Medana, C.; Cena, C.; Gasco, A.;
   Orsetti, M. *Bioorg. Med. Chem.* 1995, 3, 173.
- 91. Menziani, M. C.; DeBenidetti, P. G.; Karelson, M. Bioorg. Med. Chem. 1998, 6, 535.
- Leonardi, A.; Motta, G.; Boi, C.; Testa, R.; Pogessi, D.;
   Benedetti, P. G.; Menziani, M. C. J. Med. Chem. 1999,
   42, 427.
- 93. Antonello, A.; Hrelia, P.; Leonardi, A.; Marucci, G.; Rosini, M.; Tarozzi, A.; Tumiatti, V.; Melchiorre, C. *J. Med. Chem.* **2005**, *48*, 28.
- 94. Melchiorre, C.; Giardiana, D.; Gallucci, P.; Brasili, L. J. Pharm. Pharmacol. 1982, 34, 683.
- 95. Giardiana, D.; Angeli, P.; Brasili, G. U.; Melchiorre, C.; Strappeghetti, G. J. Med. Chem. 1984, 19, 411.
- Melchiorre, C.; Brasili, L.; Giardinti, D.; Pigini, M.; Strappaghetti, G. J. Med. Chem. 1984, 27, 1535.
- 97. Cassinelli, A.; Quaglia, W.; Brasili, L.; Giardini, D.; Gulini, U.; Melchiorre, C. Eur. J. Med. Chem. 1987, 22, 83.
- Stillings, M. S.; Chapleo, C. B.; Butler, R. C.; Davis, J. A.; England, C. D.; Myers, P. L.; Tweddle, N.; Welbourn, A. P.; Doxey, J. C.; Smith, C. F. *J. Med. Chem.* 1985, 28, 1054.
- Salituro, F. G.; Harrison, B. L.; Baron, B. M.; Stewart,
   N. K.; McDonald, I. A. J. Med. Chem. 1990, 33, 2946.
- Quagilia, W.; Pigini, M.; Tayebati, S. K.; Piergentili, A.; Giannella, M.; Marucci, G.; Melchiorre, C. J. Med. Chem. 1993, 36, 1520.
- Quaglia, W.; Pigini, M.; Tayebati, S. K.; Piergentili, A.; Giannella, M.; Leonardi, A.; Taddei, C.; Melchiorre, C. J. Med. Chem. 1996, 39, 2253.
- Quaglia, W.; Pigini, M.; Piergentili, A.; Giannella, M.; Maruccisi, G.; Poggesi, E.; Leonardi, A.; Melchiorre, C. J. Med. Chem. 1999, 42, 2961.
- Bolchi, C.; Catalano, P.; Fumagalli, L.; Gobbi, M.;
   Pallavicini, M.; Pedretti, A.; Villa, L.; Vistoli, G.; Valoti,
   E. Bioorg. Med. Chem. 2004, 4947.
- 104. Pallavicini, M.; Budriesi, R.; Fumagalli, L.; Ioan, P.; Chiarini, A.; Bolchi, C.; Ugenti, M. P.; Colleoni, S.; Gobbi, M.; Valoti, E. J. Med. Chem. 2006, 49, 7140.
- 105. Quaglia, W.; Santoni, G.; Pigini, M.; Piergentili, A.; Gentili, F.; Buccioni, M.; Mosca, M.; Lucciarini, R.; Amantini, C.; Nabissi, M. I.; Ballarini, P.; Poggesi, E.; Leonardi, A.; Giannella, M. J. Med. Chem. 2005, 48, 7750.
- 106. Ford, A. P. D. W.; Arredondo, N. F.; Blue, D. R.; Bonhaus, D. W.; Jasper, J.; Kava, M. S.; Lesnick, J.; Pfister, J. R.; Shieh, I. A.; Vimont, R. L.; Williams, T. J.; Mcneal, J. E.; Stamey, T. A.; Clarke, D. E. Mol. Pharmacol. 1996, 49, 209.
- Bolognesi, M. L.; Budriesi, R.; Cavalli, A.; Chiarini, A.; Gotti, R.; Leonardi, A.; Minarini, A.; Poggesi, E.; Recanatini, M.; Rosini, M.; Tumiatti, V.; Melchiorre, C. J. Med. Chem. 1999, 42, 4214.
- Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini, G.; Macari, M.; Manetti, F.; Strappaghetti, G.; Corsano, S. Bioorg. Med. Chem. 2002, 10, 361.
- Giardina, D.; Bertini, R.; Brancia, E.; Brasili, L.;
   Melchiorre, C. J. Med. Chem. 1985, 28, 1354.
- 110. Pallavicini, M.; Fumagalli, L.; Gobbi, M.; Bolchi, C.; Colleoni, S.; Moroni, B.; Pedretti, A.; Rusconi, C.; Vistoli, G.; Valoti, E. Eur. J. Med. Chem. 2006, 41, 1025.
- Archibald, J. L.; Alpa, B. J.; Cavalla, J. Y.; Julcacan, J. L. J. Med. Chem. 1971, 14, 1054.
- Pigini, M.; Brasili, L.; Giannella, M.; Giardin, D.; Gulini, U.; Quaglia, W.; Melchiorre, C. J. Med. Chem. 1988, 31, 2300.
- 113. Boer, R.; Grasseger, A.; Schudt, C.; Glossman, H. Eur. J. Pharmacol., Mol. Pharmacol. Sect. 1989, 172, 131.

- 114. Wetzel, J. W.; Miao, S. W.; Forray, C.; Borden, L. A.; Branchek, T. A.; Gluchowski, C. J. Med. Chem. 1995, 38, 1579.
- 115. Liang, J.-C.; Yeh, J.-L.; Wang, C.-S.; Liou, S.-Fen.; Tsai, C.-H.; Chen, I.-J. *Bioorg. Med. Chem.* **2002**, *10*, 719.
- 116. Wong, W. C.; Chiu, G.; Wetzel, J. M.; Marzabadi, M. R.; Nagarathnam, D.; Wang, D.; Fang, J.; Miao, S. W.; Hong, X.; Forray, C.; Vaysse, P. J. J.; Branchek, T. A.; Gluchowski, C.; Tang, R.; Lepor, H. J. Med. Chem. 1998, 41, 2643.
- 117. Wong, W. C.; Sun, W.; Lagu, B.; Tian, D.; Marzabadi, M. R.; Zhang, F.; Nagarathnam, D.; Miao, S. W.; Wetzel, J. M.; Peng, J.; Forray, C.; Chang, R. S. L.; Chen, T. B.; Ransom, R. W.; O'Malley, S.; Broten, T. P.; Kling, P.; Vyas, K. P.; Zhang, K.; Gluchowski, C. J. Med. Chem. 1999, 42, 4804.
- 118. Nagarathnam, D.; Miao, S. W.; Lagu, B.; Chiu, G.; Fang, J.; Murali Dhar, T. G.; Zhang, J.; Tyagarajan, S.; Marzabadi, M. R.; Zhang, F.; Wong, W. C.; Sun, T. D.; Wetzel, J. M.; Forray, C.; Chang, R. S. L.; Broten, T. P.; Ransom, R. W.; FSchorn, T. W.; Chen, T. B.; O'Malley, S.; Kling, P.; Schneck, K.; Bendesky, R.; Harrell, C. M.; Vyas, K. P.; Gluchowski, C. J. Med. Chem. 1999, 42, 4764.
- Creese, I.; Synder, S. H. J. Pharmacol. Exp. Ther. 1975, 194, 205.
- 120. Murali Dhar, T. G.; Nagarathnam, D.; Marzabadi, M. R.; Lagu, B.; Wong, W. C.; Chiu, G.; Tyagarajan, S.; Miao, S. W.; Zhang, F.; Sun, W.; Tian, D.; Shen, Q.; Wetzel, J. M.; Forray, C.; Chang, R. S. L.; Broten, T. P.; Schorn, T. W.; Chen, T. B.; O'Malley, S.; Ransom, R. W.; Schneck, K.; Bendesky, R.; Harrell, C. M.; Vyas, K.; Zhang, K.; Gilbert, J.; Pettibone, D. J.; Kling, P.; Patane, M. A.; Bock, M. G.; Freidinger, R. M.; Gluchowski, C. J. Med. Chem. 1999, 42, 4778.
- 121. Lagu, B.; Tian, D.; Nagarathnam, D.; Marzabadi, M. R.; Wong, W. C.; Miao, S. W.; Zhang, F.; Sun, W.; Chiu, G.; Fang, J.; Forray, C.; Chang, R. S. L.; Ransom, R. W.; Chen, T. B.; O'Malley, S.; Zhang, K.; Vyas, K. P.; Gluchowski, C. J. Med. Chem. 1999, 42, 4794.
- 122. Singh, P.; Sharma, B. K. Indian J. Pharm. Sci. 2003, 65, 595
- Barrow, J. C.; Glass, K. L.; Selnick, H. G.; Freidinger, R. M.; Raymond, S. L.; O'Malley, C. S. S.; Woyden, C. Bioorg. Med. Chem. Lett. 2000, 10, 1917.
- 124. Lopez, F. J.; Chan, A. R.; Clarke, D. E.; Elworthy, T. R.; Ford, A. P. D. W.; Guzman, A.; Jaime-Figueroa, S.; Jasper, J. R.; Morgans, D. J., Jr.; Padila, F.; Prez-Medrana, A.; Quintero, C.; Romero, M.; Sandoval, L.; Smith, S. A.; Williams, T. J.; Blue, D. R. Bioorg. Med. Chem. Lett. 2003, 13, 1873.
- 125. Imagawa, J.; Sakai, K. Eur. J. Pharmacol. 1986, 131, 257.
- Ronald, K.; Russell, J. B.; Press, R. A.; Rampulla, J. J.;
   McNally, R.; Falotico, J. A.; Keiser, D. A.; Bright, A. T. J. Med. Chem. 1988, 31, 1786.
- 127. Pittala, V.; Romeo, G.; Salerno, L.; Siracusa, M. A.; Modica, M.; Materia, L.; Mereghetti, I.; Cagnotto, A.; Mennini, T.; Marucci, G.; Angeli, P.; Russo, F. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 150.
- 128. Russo, F.; Romeo, G.; Guccione, S.; Blasi, A. D. *J. Med. Chem.* **1991**, *34*, 1850.
- 129. Romeo, G.; Materia, L.; Manetti, F.; Cagnotto, A.; Mennini, T.; Nicoletti, F.; Botta, M.; Russo, F.; Minneman, K. P. J. Med. Chem. 2003, 46, 2877.
- Romeo, G.; Materia, L.; Marucci, G.; Modica, M.;
   Pittala, V.; Salerno, L.; Siracusa, M. A.; Buccioni, M.;
   Angeli, P.; Minneman, K. P. Bioorg. Med. Chem. Lett.
   2006, 16, 6200.

- Chern, J. W.; Tseng, C. J.; Yen, M. H.; Ferng, L. J.; Ho,
   C. P.; Rong, J. G.; Wu, K. R. Chin. J. Pharm. 1992, 44,
- 132. Meyer, M. D.; Altenbach, R. J.; Basha, F. Z.; Carroll, W. A.; Drizin, I.; Elmore, S. W.; Ehrlich, P. P.; Lebold, S. A.; Tietje, K.; Sippy, K. B.; Wendt, M. D.; Plata, D. J.; Plagge, F.; Buckner, S. A.; Brune, M. E.; Hancock, A. A., ; Kerwin, J. F., Jr. J. Med. Chem. 1997, 40, 3141.
- 133. Meyer, M. D.; Altenbach, R. J.; Bai, H.; Basha, F. Z.; Carroll, W. A.; Kerwin, J. F., Jr.; Lebold, S. A.; Lee, E.; Pratt, J. K.; Sippy, K. B.; Tietje, K.; Wendt, M. D.; Brune, M. E.; Buckner, S. A.; Hancock, A. A.; Drizin, I. J. Med. Chem. 2001, 44, 1971–1985.
- 134. Ismail, M. A. H.; Aboul-Enein, M. N. Y.; Abouzid, K. A. M.; Serya, R. A. T. *Bioorg. Med. Chem.* 2006, 14, 898.
- 135. Wu, Y. H. U.S. Patent 3,398,151, 1968; *Chem Abstr.* **1969**, 70, 4143s.
- Wu, Y. H.; Smith, K. R.; Rayburn, J. W.; Kissel, J. W. J. Med. Chem. 1969, 12, 876.
- Goetz, A. S.; King, H. K.; Ward, S. D. C.; True, T. A.; Rimele, T. J.; Saussy, D. L. Eur. J. Pharmacol. 1995, 272, R5
- Saussy, D. L., Jr.; Goetz, A. S.; Queen, K. L.; King, H. K.; Lutz, M. W.; Rimele, T. J. J. Pharmacol. Exp. Ther. 1996, 278, 136.
- Konkel, M. J.; Wetzel, J. M.; Cahir, M.; Craig, D. A.;
   Noble, S. A.; Gluchowski, C. J. Med. Chem. 2005, 48, 3076
- Lopez-Rodriguez, M. L.; Rasado, M. L.; Benhamu, B.; Morcillo, M. J.; Fernandez, E.; Schaper, K.-J. *J. Med. Chem.* **1997**, *40*, 1648.
- Carsano, S.; Strappaghetti, G.; Codagnone, A.; Scapicchi, R.; Murucci, G. Eur. J. Med. Chem. 1992, 27, 545.
- Carsano, S.; Scapicchi, R.; Strappaghetti, G.; Marucci,
   G.; Paparelli, F. Eur. J. Med. Chem. 1993, 28, 647.
- 143. DeMarinis, R. M.; Wise, M.; Hieble, J. P.; Ruffolo, R. R. In *The Alpha-1 Adrenergic Receptor*; Rufolo, R. R., Jr., Ed.; Humana Press: New Jersey, 1987; pp 211–265.
- 144. Carsano, S.; Scapichhi, R.; Strappaghetti, G.; Murrucci, G.; Paparelli, F. Eur. J. Med. Chem. 1995, 30, 71.
- Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini, G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano, S. J. Med. Chem. 2001, 44, 2118.
- Betti, L.; Floridi, M.; Giannaccini, G.; Manetti, F.;
   Strppaghrtti, G.; Tafi, A.; Botta, M. Bioorg. Med. Chem. Lett. 2003, 13, 171.
- Montesano, F.; Barlocco, D.; Piaz, V. D.; Leonardi, A.;
   Poggesi, E.; Fanelli, F.; Benedetti, P. G. D. *Bioorg. Med. Chem.* 1998, 6, 925.
- 148. Betti, L.; Botta, M.; Corelli, F.; Floridi, M.; Fossa, P.; Giannaccini, G.; Manetti, F.; Strappaghetti, G.; Corsano, S. Bioorg. Med. Chem. Lett. 2002, 12, 437.
- Barlocco, D.; Cignarella, G.; Montesano, F.; Leonardi,
   A.; Mella, M.; Toma, L. J. Med. Chem. 1999, 42, 173.
- Barlocco, D.; Cignarella, G.; Piaz, D. V.; Giovannoni, M. P.; Benedetti, P. G. D.; Fanelli, F.; Montesano, F.; Poggesi, E.; Leonardi, A. J. Med. Chem. 2001, 44, 2403.
- Cinone, N.; Carrieri, A.; Strappaghetti, G.; Corsano, S.; Barbaro, R.; Carotti, A. *Bioorg. Med. Chem.* 1999, 7, 2615.
- Betti, L.; Botta, M.; Corelli, F.; Floridi, M.; Giannaccini,
   G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Tafi, A.;
   Corsano, S. J. Med. Chem. 2002, 45, 3603.
- Amemiya, Y.; Hong, S. S.; Venkataraman, B. V.; Patil,
   P. N.; Shams, G.; Romstedt, K.; Feller, D. R.; Hsu, F.
   L.; Miller, D. D. J. Med. Chem. 1992, 35, 750.
- 154. Ford, A. P. D. W.; Williams, T. J.; Blue, D. D. R.; Clarke, E. Trends Pharmacol. Sci. 1994, 15, 167.

- Dardonville, C.; Rozas, I.; Alkorta, I. J. Mol. Graph. Mod. 1999, 16, 150.
- Dardonville, C.; Goya, P.; Rozas, I.; Alsasua, A.; Martin, M. I.; Borrego, M. J. Bioorg. Med. Chem. 2000, 8, 1567.
- 157. Altenbach, R. J.; Khilevich, A.; Meyer, M. D.; Buckner, S. A.; Milicic, I.; Daza, A. V.; Brune, M. E.; O'Neill, A. B.; Gauvin, D. M.; Cain, J. C.; Nakane, M.; Holladay, M. W.; Williams, M.; Brioni, J. D.; Sullivan, J. P. J. Med. Chem. 2002, 45, 4395.
- 158. Buckner, A. S.; Milicic, I.; Daza, V. A.; Meyer, D. M.; Altenbach, J. R.; Williams, M.; Sullivan, P. J.; Brioni, D. J. Eur. J. Pharmacol. 2002, 449, 159.
- 159. Altenbach, R. J.; Khilevich, A.; Kolasa, T.; Rohde, J. J.; Bhatia, P. A.; Patel, M. V.; Searle, X. B.; Yang, F.; Bunnelle, W. H.; Tietje, K.; Bayburt, E. K.; Carroll, W. A.; Meyer, M. D.; Henry, R.; Buckner, S. A.; Kuk, J.; Daza, A. V.; Milicic, I. V.; Cain, J. C.; Kang, C. H.; Ireland, L. M.; Carr, T. L.; Miller, T. R.; Hancock, A. A.; Nakane, M.; Esbenshade, T. A.; Brune, M. E.; O'Neill, A. B.; Gauvin, D. M.; Katwala, S. P.; Holladay, M. W.; Brioni, J. D.; Sullivan, J. P. J. Med. Chem. 2004, 47, 3220.
- Chern, J. W.; Tao, P. L.; Yen, M. H.; Lu, G. Y.; Shiau,
   C. Y.; Lai, Y. J.; Chan, C. H. J. Med. Chem. 1993, 36, 2196.
- Chern, J. W.; Tao, P. L.; Wang, K. C.; Gutcait, A.; Liu,
   W.; Yen, M. H.; Chien, S. L.; Rong, J. K. J. Med. Chem. 1998, 41, 3128.
- Balle, T.; Perregaard, J.; Ramirez, M. T.; Larsen, A. K.;
   Soby, K. K.; Liljefors, T.; Andersen, K. J. Med. Chem.
   2003, 46, 265.
- Balle, T.; Andersen, K.; Soby, K. K.; Liljefors, T. J. Mol. Graph. Model. 2003, 21, 523.
- 164. Reitz, A. B.; Bennett, D. J.; Blum, P. S.; Codd, E. E.; Maryanoff, C. A.; Ortegon, M. E.; Renzi, M. J.; Scott, M. K.; Shank, R. P.; Vaught, J. Ln J. Med. Chem. 1994, 37, 1060.
- Khatuya, H.; Pulito, V. L.; Jolliffe, L. K.; Li, X.; Murray,
   W. V. Bioorg. Med. Chem. Lett. 2002, 12, 2145.
- Khatuya, H.; Hutchings, R. H.; Kuo, G. H.; Pulito, V. L.; Jolliffe, L. K.; Li, X.; Murray, W. V. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 2443.
- Abell, A. D.; Henderson, B. R. Curr. Med. Chem. 1995, 2, 538.
- Li, X.; Chen, C.; Singh, S.; Labrie, F. Steroids 1995, 60, 430
- Nakai, H.; Terashima, H.; Arai, Y. EP 0 292 245 A2, 1988; Chem. Abstr. 1988, 110, 212384t.
- 170. Yoshida, K.; Horikoshi, Y.; Eta, M.; Chikazawa, J.; Orishima, M.; Fukuda, Y.; Sato, H. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2967.
- Dighade, S. J.; Jain, H. K.; Sexena, A. K.; Agrawal, R. K. *Indian J. Pharm. Sci.* 2003, 65, 586.
- 172. Testa, R.; Guarneri, L.; Taddei, C.; Poggesi, E.; Angelico, P.; Sartani, A.; Leonardi, A.; Gofrit, O. N.; Meretyk, S.; Caine, M. J. Pharmacol. Exp. Ther. 1996, 277, 1237.
- 173. Kuo, G.-H.; Prouty, C.; Murray, W. V.; Pulito, V.; Jolliffe, L.; Cheung, P.; Varga, S.; Evangelisto, M.; Wang, J. *J. Med. Chem.* **2000**, *43*, 2183.
- 174. Kuo, G. H.; Prouty, C.; Murray, W. V.; Pulito, V.; Jolliffe, L.; Cheung, P.; Varga, S.; Evangelisto, M.; Shaw, C. *Bioorg. Med. Chem.* **2000**, *8*, 2263.
- 175. Boschi, D.; Tron, G. C.; Di Stilo, A.; Fruttero, R.; Gasco, A.; Poggesi, E.; Motta, G.; Leonardi, A. *J. Med. Chem.* **2003**, *46*, 3762.
- 176. Betti, L.; Floridi, M.; Giannaccini, G.; Manetti, F.; Paparelli, C.; Strappaghetti, G.; Botta, M. *Bioorg. Med. Chem.* **2004**, *12*, 1527.

- Li, M. Y.; Fang, H.; Xia, Lin. Bioorg. Med. Chem. Lett. 2005, 15, 3216.
- Patane, M. A.; DiPardo, R. M.; Price, R. P.; Chang, R. S. L.; Ransom, R. W.; O'Malley, S. S.; DiSalvo, J.; Bock, M. G. *Bioorg. Med. Chem.* 1998, 8, 2495.
- 179. Raghupathi, R. K.; Rydelek-Fitzgerald, L. L.; Tietler, M.; Glennon, R. A. J. Med. Chem. 1991, 34, 2633
- 180. Nerenberg, J. B.; Erb, J. M.; Thompson, W. J.; Lee, H. Y.; Guare, J. P.; Munson, P. M.; Bergman, J. M.; Huff, J. R.; Broten, T. P.; Chang, R. S. L.; Chen, T. B.; O'Malley, S.; Schorn, T. W.; Scott, A. L. Bioorg. Med. Chem. Lett. 1998, 8, 2467.
- 181. Elworthy, T. R.; Ford, A. P. D. W.; Bantle, G. W.; Morgans, D. J., Jr.; Ozer, R. S.; Palmer, W. S.; Repke, D. B.; Romero, M.; Sandoval, L.; Sjogren, E. B.; Talama's, F. X.; Vazquez, A.; Wu, H.; Arredondo, N. F.; Blue, D. R., Jr.; DeSousa, A.; Gross, L. M.; Kava, M. S.; Lesnick, J. D.; Vimont, R. L.; Williams, T. J.; Zhu, Q. M.; Pfister, J. R.; Clarke, D. E. J. Med. Chem. 1997, 40, 2674.
- 182. Li, M.; Xia, L. Chem. Biol. Drug. Des. 2007, 70, 461.
- 183. McCarthy, J. R.; Zimmerman, M. B.; Trepanier, D. L.; LeTourneau, M. E.; Wiedman, P. E.; Whitten, J. P.; Broersma, R. J.; Shea, P. J.; Wiech, N. L.; Huffman, J. C. J. Med. Chem. 1985, 28, 1142.
- 184. Lagu, B.; Tian, D.; Jeon, Y.; Li, C.; Wetzel, J. M.; Nagarathnam, D.; Shen, Q.; Forray, C.; Chang, R. S. L.; Broten, T. P.; Ransom, R. W.; Chan, T. B.; O'Malley, S.; Schorn, T. W.; Rodrigues, A. D.; Kasshun, K.; Pettibone, D. J.; Freidinger, R.; Gluchowski, C. J. Med. Chem. 2000, 43, 2775.
- 185. Okuyama, S.; Chaki, S.; Yoshikawa, R.; Suzuki, Y.; Ogawa, S.-I.; Imagawa, Y.; Kawashima, N.; Ikeda, Y.; Kumagai, T.; Nakazato, A.; Nagamine, M.; Tomisawa, K. J. Pharmacol. Exp. Ther. 1997, 282, 56
- 186. Menziani, M. C.; Montorsi, M.; Benedetti, P. G. D.; Karelson, M. *Bioorg. Med. Chem.* 1997, 7, 2437.
- Bradley, E. K.; Beroza, P.; Penzotti, J. E.; Grootenhuis,
   P. D. J.; Spellmeyer, D. C.; Miller, J. L. *J. Med. Chem.* 2000, 43, 2774.
- Sagratini, G.; Angeli, P.; Buccioni, M.; Gulini, U.; Marucci, G.; Melchiorre, C. *Bioorg. Med. Chem.* 2007, 15, 2334.
- Testa, R.; Guarneri, L.; Ibba, M.; Strada, G.; Poggesi,
   E.; Taddei, C.; Simonazzi, I.; Leonardi, A. Eur. J. Pharmacol. 1993, 249, 307.
- Buckner, S. A.; Milicic, I.; Daza, A. V.; Meyer, M. D.; Altenbach, R. J.; Williams, M.; Sullivan, J. P.; Brioni, J. D. Eur. J. Pharmacol. 2002, 449, 159.
- Tanoue, A.; Nasa, Y.; Koshimizu, T.; Shinoura, H.; Oshikawa, S.; Kawai, T.; Sunada, S.; Takeo, S.; Tsujimoto, G. J. Clin. Invest. 2002, 109, 765.
- Oshita, M.; Kigoshi, S.; Muramatsu, I. Br. J. Pharmacol. 1993, 108, 1071.



Dr. Kishor S. Jain was born on 24 February 1960 in Maharashtra, India. He completed his B.Pharm. in 1980 from Bombay University, Bombay, and M.Pharm. (Pharm. Chemistry) in 1982 and Ph.D. (Pharm. Chemistry) in 1991 from Gujarat University, Ahmedabad, India. Thereafter, he joined L.M. College of Pharmacy, Ahmedabad, as Assistant Professor. Presently, he holds the posts of Principal and Professor of Medicinal Chemistry at Sinhgad College of Pharmacy, Vadgaon, Pune, India. Dr. Jain holds good Industrial experience also (10 years). Earlier, he was Vice-President

(R&D) of Dishman Pharmaceuticals & Chemicals Ltd, Ahmedabad, for 4 years. He has more than 90 research publications to his credit. His areas of research include N.D.D.R. involving rational drug design, synthesis, and evaluation of novel antimalarial, antihyperlipidemic, antihypertensive, anticancer, and anti-ulcer agents. He also has considerable work in the field of Green Chemistry involving Microwave based Chemical Synthesis and Phase Transfer Catalysis. He is also involved in Chemical Process development of API and specialty fine chemicals, Library synthesis, Custom synthesis, etc. He is a recognized PG and Ph.D. guide for three Universities. Presently two Ph.D. and eight M.Pharm. students are working under his guidance. He is currently Member of American Chemical Society (ACS), Life-Member of Indian Pharmaceutical Association (IPA), Indian Society of Technical Education (ISTE), Association of Pharmacy Teachers of India (APTI), and Member of Board of Studies and Faculty of Pharmacy, Pune, University. He is also the Joint Secretary of the IPA-Pune Branch and Member of National Executive Council of APTI.



Jitender B. Bariwal was born on 18 February 1980 in Hissar, Haryana, India. He earned his B. Pharmacy in 2002 from Guru Jambheshwar University, Hissar, Haryana, India, and M. Pharmacy (Pharmaceutical Chemistry) in 2004 from Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India. In 2002, he joined to research group of Professor Kishor S. Jain and Professor Anamik K. Shah at the Department of Chemistry, Saurashtra University, Rajkot, Gujarat, India, for pursuing Ph.D in Pharmaceutical Sciences. His topic of research in Ph.D. includes devel-

opment of Reversible Proton Pump Inhibitors in Gastric Ulcer disease, Calcium Channel blockers and Multidrug-Resistant Reverting agents (MDR).



M.K. Kathiravan was born on 19 December 1978 in Madurai, Tamilnadu, India. He obtained his B.Pharm. degree in 2000 from The Tamil Nadu Dr. M.G.R. Medical University and M.Pharm. (Pharmaceutical Chemistry) in 2003 from Pune University. He is currently pursuing his Ph.D. degree in Pharmaceutical Chemistry, from Bharati Vidyapeeth University, Pune, under the supervision of Professor K.S. Jain. He is a Senior Research Fellow of the Indian Council of Medical Research, (ICMR), New Delhi. His research interest spans the field of Syn-

thetic Organic Chemistry, Medicinal Chemistry including the design, synthesis, and development of small organic molecules for the treatment of hyperlipidemia, cancer, and tuberculosis.



Manisha S. Phoujdar is working as a professor in the Pharmaceutical Chemistry and Medicinal Chemistry at Sinhgad College of Pharmacy, Vadgaon (Bk), Pune. Born on 3rd September 1968, she has done her B.Pharm from the College of Pharmacy, New Delhi in 1989 and M.Tech in Biotechnology from Jadavpur University, Kolkata, India in 1991. She has secured University Gold medal in M.Tech course. She has rich Industrial Experience in R&D for 12 years and academic experience for the last 5 years. She has a total of 15 publications in conferences and sympo-

sium out of which four have been in International conferences.



Rajkumari S. Sahne is working as a lecturer in Pharamcology at Sinhgad College of Pharmacy, Vadgaon (Bk), Pune. Born on 18th April 1981, she has done her B.Pharm from Dr. D.Y. Patil College of Pharmacy for women, Pune in 2003, and M.Pharm in Pharmacology from Dr. D.Y. Patil college of Pharmaceutical Sciences and Research, Pune, India, in 2005. She has academic experience of 2 years.



Bishram S. Chouhan was born in Kashmir, India, in 1978. He has completed his graduation (1999) and post graduation (2001) from the University Department of Pharmaceutical Sciences, Nagpur University, Maharashtra, India. He worked for the pharmaceutical industry in new chemical entity research for almost three years before oining the Ph.D. program under Prof. M. R. Yadav at The Maharaja Sayajirao University of Baroda, Vadodara, India, in the year 2004. His Ph.D. work included design and synthesis of some balanced modulators of Alpha-1 and angio-

tensin-II receptors. His research interest concerns the development of twin drugs possessing antihypertensive and anticancer activities.



Prof. Anamik K. Shah was born on 4 September. 1954 in Rajkot, Gujarat, India. He obtained his B.Sc. degree in 1975 from Saurashtra University, Rajkot, and M.Sc. in 1977 (Organic Chemistry) from the same University. He earned his Ph.D. degree in 1983 (Organic Chemistry) from Saurashtra University, Rajkot, under the supervision of Professor V. M. Thakor. After completion of his Ph.D in 1983, he joined the same Department as a University lecturer until 1996 and then he was promoted as Associate Professor and in 2004 as Professor. His research interest spans

the field of synthetic Organic Chemistry, Medicinal Chemistry and includes development of small organic molecules for the treatment of cancer, HIV, bacterial infections, gastric ulcer particularly proton pump inhibitors, multidrug-resistant therapy (MDR), anti-inflammatory and tuberculosis.



**Dr. M.R.Yadav** is presently working as Professor of Pharmaceutical Chemistry at the Pharmacy Department, The M.S. University of Baroda, Vadodara. Born in September1954, he had his schooling at Delhi and graduated from the University of Delhi. He obtained his postgraduate degree in Pharm. Chemistry from Banaras Hindu University, Varanasi, and Ph.D. in Pharm. Chemistry from Punjab University, Chandigarh, where he also remained a teaching faculty for 6 years. He also had a brief stint of 4 years as Assistant Professor at the College of Pharmacy, Delhai

University, Delhi. Dr. Yadav has a research experience of almost 25 years with more than 70 national as well as international research publications to his credit. His research interests include molecular modeling studies in designing of medicinally active compounds in the fields of anti-inflammatory, anti-hypertensive agents and steroidal aromatase inhibitors.